近傍界用ノイズ抑制シートの伝送減衰率 R_{tp} 測定用フィクスチャの作製

林 達郎 ${ }^{* 1)}$

Fixture for Transmission Attenuation Power Ratio $\boldsymbol{R}_{\mathbf{t p}}$ Measurement of Noise Suppression Sheet

HAYASHI Tatsuro ${ }^{* 1)}$

電子基板や部品から発生する電磁的なノイズの対策に，近傍界用のノイズ抑制シートが利用されている。本研究では，近傍界用ノイズ抑制シートの伝送減衰率 R_{tp} の測定に使用できるフィクスチャの作製を目的 に，ガラスエポキシ（FR－4）両面基板を用いたマイクロストリップラインを構成し，フィクスチャとして求 められる特性を測定した。結果として，作製したフィクスチャは，ノイズ抑制シートを装着しない単体の状態で，測定対象周波数 $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ において，片側端を 50Ω で終端したときの電圧定在波比 VSWRが 1.5 より小さく，また，終端を取り外して測定した透過損失 S21 の値が，無視できる程度に小さいことから，国際規格 IEC62333－2 に準ずる $R_{\text {tp }}$ の測定に使用できることを確認した。

1．緒言

近傍界用ノイズ抑制シートは，電子基板や部品，ケーブ ルなどに貼り付けるなど近接して装着することで，電磁的 なノイズを抑制できるため，回路，基板の設計変更を行わ ずに EMC 対策が行える選択肢として利用されている。

国際規格 IEC62333－2 ${ }^{11}$ には，近傍界用ノイズ抑制シート の性能指標として，内部減結合率 R_{da} ，相互減結合率 R_{de} ，伝送減衰率 R_{tp} ，輻射抑制率 R_{rs} が規定されているが，なか でも R_{tp} は，ノイズ抑制シートの装着によって減衰するノ イズ量を直接的に示すことから，シートの代表的な特性値 として扱われることが多い。

本研究では，測定対象周波数 $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ において，近傍界用ノイズ抑制シートの $R_{\text {tp }}$ 測定に使用できるフィク スチャの作製を目的に，入手しやすい低周波用のガラスエ ポキシ（FR－4）両面基板を用いたマイクロストリップライ ンを構成し，フィクスチヤに求められる特性を満足するか検討した。

2．フィクスチャの設計

2． $1 R_{\text {tr }}$ 測定の概要

前述のとおり，電子基板上を伝導するノイズが，ノイズ抑制シートの装着によって減衰する量は $R_{\text {tp }}$ で示される
R_{tp} は，図 1 に示す測定系により，フィクスチャにノイズ抑制シートを装着した際に得られる反射係数 S11 と透過係数 S21 の測定値 S $11 M$ ，S21M から，次式により求めること ができる。

$$
\begin{equation*}
R_{t p}=-10 \log \left\{10^{\frac{S 21 M}{10}} /\left(1-10^{\frac{S 11 M}{10}}\right)\right\} \tag{dB}
\end{equation*}
$$

図1 $R_{\text {tp }}$ の測定系

2． 2 フィクスチャの構成

フィクスチャは，図 2 に示すように，電子基板上のノイ ズ伝導ルートをマイクロストリップラインで疑似的に構成 するもので，表面の導電パターンの両端裏側に高周波用の SMA コネクタを設けて，ネットワークアナライザとの接続 に使用する。

図2 フィクスチャの形状（単位mm）
また，ノイズ抑制シートを装着しない状態で，片側端を 50Ω で終端したときの電圧定在波比 VSWRが，測定対象周波数において 1.5 より小さいことが，規格で求められる特

[^0]性である。
ところで，規格にはフィクスチャ用の基板として，比誘電率 ε_{γ} が $2.2 \sim 2.6$ の高周波用基板が推奨されており，その際の導電パターン寸法も示されている。しかし，高周波用 の基板は少量での入手性，価格に課題が残るため，一般の回路試作に広く用いられる低周波用の基板を用いてフィク スチャを構成できれば，$R_{\text {tp }}$ の測定環境が構築しやすい。

そこで本研究では，入手しやすいガラスエポキシ（FR－4）両面基板を用いて，フィクスチャの作製を試みた。

2． 3 特性インピーダンスの検討

図 1 に示す測定系では，フィクスチヤを含む伝送路の特性インピーダンスを 50Ω に整合する必要がある。

フィクスチャにガラスエポキシ（FR－4）基板を用いる場合，高周波用基板と比較して比誘電率が大きいため，規格 に示されたフィクスチャ表面の導電パターン寸法のらち，幅 W に関する推奨値 $4.40 \pm 0.05 \mathrm{~mm}$ では，特性インピーダ ンスが 50Ω に整合せず，W の設計変更が必要と考えられ る。

ここで，マイクロストリップラインの特性インピーダン ス Z_{0} は，近似的に次式 ${ }^{2)}$ で示される。

$$
Z_{0}=\frac{87}{\sqrt{1.41+\varepsilon_{\gamma}}} \times \ln \left(\frac{5.98 h}{0.8 W+t}\right)
$$

ε_{γ} ：基板の比誘電率
$h:$ 基板の厚み（ m ）
W ：線路幅（m）
t ：線路厚み（ m ）

使用するガラスエポキシ（FR－4）基板の比誘電率 ε_{γ} が 4.5 ，基板の厚み h が 1.6 mm ，線路厚み t が 0.035 mm としたと き，上式を用いて線路の特性インピーダンス Z_{0} が 50Ω に近い値となる W を概算すると約 3 mm であるため，この値 を用いてさらに検討を進める。

2.4 シミュレーションによる VSWRの計算

伝送路の特性インピーダンスの整合状態は，フィクスチ ヤの片側端を 50Ω で終端したときの反射レベルと相関す るため，VSWR で確認することができる。

前節で得られた W の妥当性ならびに，W が変化したとき の許容範囲を調べるため，測定対象周波数を拡張した 0.1 $\mathrm{GHz} \sim 4 \mathrm{GHz}$ における VSWR をシミュレーション ${ }^{3}$ ）により計算し，規格で求められる特性と比較検討した。

フィクスチャを解析空間に配置した様子を図3に示す。 その際，簡単のためフィクスチヤ表面の導電パターンの端部は，図 2 に示すように丸めず，角状とした。
W を $2.50 \mathrm{~mm} ~ 3.50 \mathrm{~mm}$ の間で， 0.25 mm 刻みで 5 種類変化したときのVSWRを計算した結果を図4に示す。

図 3 解析空間への配置

図4 VSWRの計算結果
測定対象周波数の $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ に着目すると，W が いずれの場合も， 3 GHz 付近の一部を除き，特性インピー ダンスの整合によってVSWRは1．5より小さいと予想され，規格で求められる特性を概ね満たすと考えられる。一方， 3 GHz 付近の極大を示す部分においては，定在波が生じる可能性が示唆される。
W が最も小さい 2.50 mm のときは， 3 GHz 近傍における $V S W R$ の立ち上がりが顕著であること，また，W が最も大 きい 3.50 mm のときは，全ての周波数帯において VSWR が増大する傾向にあることから，W は $2.75 \mathrm{~mm} \sim 3.25 \mathrm{~mm}$ の範囲内にあることが望ましいと考えられる。
最後に，W が 3.00 mm のとき，片側端を 50Ω で終端し た場合のS11と，終端を外してS21を計算した結果を図5 に示す。

図 5 S11，S21 の計算結果
S11 の計算結果より， 3 GHz 付近における値の上昇，即 ち反射の増加が予想されること，また，S21 の計算結果か

ら，測定対象周波数の全域において値がほぼ零に近く，フ ィクスチャ内で生じる透過減衰は，極めて小さいことが予想される。

3．フィクスチャの作製と評価

3.1 基板の加エ

前章の検討結果をもとに，ガラスエポキシ（FR－4）両面基板を用いて，フィクスチャの作製を行った。

作製は，基板切断，導電パターン部のマスキング，エッ チング，穴あけ加工，SMA コネクタ取り付けの手順で進め，全てを手作業で行った。フィクスチヤの外寸は，図2にし たがった。また，導電パターンの幅 W は，結果的に前章で得られた許容範囲内である 3.25 mm となった。

なお，定在波の発生を抑制する目的で，導電パターンの端部は図 2 に示すように，丸く加工した。

フィクスチャの外観を図6に示す。

図 6 フィクスチヤの外観

3．2 VSWRの測定と評価

作製したフィクスチャにノイズ抑制シートを装着しない単体の状態で，測定対象周波数 $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ において，片側端を 50Ω で終端したときの VSWRを測定した。測定 には，ネットワークアナライザを使用し，終端にはネット ワークアナライザ校正用の 50Ω 負荷を使用した。

測定結果に加え，導電パターンの幅 W が 3.25 mm のとき のVSWRをシミュレーションで計算した結果を重ね合わせ たグラフを図7に示す。

これより，作製したフィクスチャの VSWR の測定値は，測定対象周波数の全域において 1.5 より小さく，フィクス チャに求められる特性を満足すると評価できる。また，シ ミュレーションの際に 3 GHz 付近に予想された極大値は，現れていない。

次に，ノイズ抑制シートを装着しない単体の状態で，片側端を 50Ω で終端したときの S 11 と，終端を取り外した ときのS21を測定した結果を図 8 に示す。

図 5 に示した計算結果と比較して，測定結果ではS11の 3 GHz 付近に予想された値の上昇は生じておらず，反射の増加はみられない。また，S21 については，計算結果と同様に測定対象周波数の全域において値が零に近いことから， フィクスチャ内で生じる透過損失は無視できる程度に小さ いと評価できる。

図7 VSWRの計算結果と測定結果

図 8 S11，S21 の測定結果

4．考察

前章までの検討で，作製したフィクスチャが，規格に求 められる特性を満足する結果が得られた。
ところで，実際のノイズ抑制シートの測定においては， シートとフィクスチャの密着性不良が原因で，測定誤差が生じる恐れがある。また，その原因としてフィクスチャの導電パターン上の SMA コネクタの芯線処理の不良や，芯線とパターンを接合するハンダによる隆起が考えられる。

そこで，作製したフィクスチャが，実際のノイズ抑制シ ートの R_{tp} 測定において正しく機能するか考察するため，共通サンプルを用いて，作製したフィクスチャを使用して得られる R_{tp} と，高周波用基板で構成された市販のフィク スチャを使用して得られる R_{tp} の比較測定を行った。
共通サンプルには，樹脂にカーボンを添加したシートを使用し，測定で得られる $S 11 M, ~ S 21 M$ を用いた R_{tp} の算出 には， 2.1 に示した数式を用いた。
比較測定の結果を図 9 に示す。
これより，測定対象周波数 $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ において，作製したフィクスチャを使用して得られる $R_{\text {tp }}$ は，市販のフ ィクスチャを使用して得られる R_{tp} とほぼ近似しており， ノイズ抑制シートを装着する際に生じる物理的な隙間など に起因する誤差は抑制されているものと考察できる。

図 9 共通サンプルを用いた比較測定結果

5．結言

近傍界用ノイズ抑制シートの伝送減衰率 R_{tp} の測定に使用できるフィクスチャの作製を目的に，ガラスエポキシ
（FR－4）両面基板を用いたマイクロストリップラインを構成し，フィクスチャに求められる特性を測定した。

結果として，作製したフィクスチャは，測定対象周波数 $0.1 \mathrm{GHz} \sim 3 \mathrm{GHz}$ において片側端を 50Ω で終端したときの VSWR が 1.5 より小さく，また，終端を取り外して測定した透過損失 S21 の値がほぼ零であることから，IEC62333－2 に準ずる R_{tp} の測定に使用可能であることを確認した。

さらに共通サンプルを用いて，市販のフィクスチャを使用して得られる R_{tp} との比較測定を行った結果から，作製 したフィクスチャが実際のノイズ抑制シートの R_{tp} 測定に おいて，正常に機能することを確認した。

今後の課題として，測定対象周波数の広帯域化や，輻射抑制率 R_{rs} 測定への転用の可能性が挙げられる。

謝辞

本研究の実施にあたり，地方独立行政法人大阪産業技術研究所和泉センターの伊藤盛通主任研究員にご協力を頂き ました。

なお，本研究で使用した機器は，公益財団法人 JKA の「機械振興補助事業」により導入，設置したものである。

参考文献

1）International Electrotechnical Commission ：IEC62333－2， INTERNATIONAL STANDARD， 2006

2）伊藤健一：分布定数回路のはなし，pp．96－97，日刊工業新聞社， 2003
3）小暮裕明：電磁界シミュレータで学ぶワイヤレスの世界， pp．39－42，CQ 出版社， 2001

[^0]: ${ }^{*}$ 1）機械•電気•材料グループ

