ナラノヤエザクラ酵母のビール釀造特性

萎原 智也＊1）

Beer brewing characterization of＂Naranoyaezakura＂yeast

KUWAHARA Tomoya＊${ }^{* 1}$

ナラノヤエザクラ酵母は，奈良県が 2008 年に国立大学法人奈良国立大学機構奈良女子大学と共同で奈良公園のナラノヤエザクラの花から単離した酵母であり，2009 年には特許出願するとともに本酵母を使用した清酒が商品化され，現在も製造•販売されている。しかし，特許出願後から現在に至るまで，ナラノヤエザ クラ酵母の使用が特定の 1 者のみに留まっていることから，ナラノヤエザクラ酵母の新たな活用方法の検討 を行った。その結果，ナラノヤザクラ酵母は高いマルトース発酵能を有することが明らかとなり，麦汁発酵試験においても高いアルコール発酵能を示したことから，ビール醸造に適用可能であることが示された。 さ らに，ナラノヤエザクラ酵母は，Saccharomyces cerevisiae の変種で分泌性グルコアミラーゼを産生できる Saccharomyces cerevisiae var．diastaticus（S．diastaticus）であることが，PCR 法による簡易識別によって強く示唆 された。S．diastaticus は，ベルギービールの 1 つであるセゾンスタイルのビール醸造で多く使用されている ことから，ナラノヤエザクラ酵母はセゾンスタイルビールに利用可能な酵母であることが示唆された。

1．緒言

これまで奈良県では，清酒醸造業界で広く使用されてい るきょうかい酵母との差別化を図るため，県内の地域資源 から単離した野生酵母を使用した清酒の開発を進めてきた 1）2）3），そのうちの 1 つ，ナラノヤエザクラ酵母は 2008 年 に国立大学法人奈良国立大学機構奈良女子大学と共同で奈良公園のナラノヤエザクラの花から単離した酵母であり， 2009 年には特許出願 4）するとともに本酵母を使用した清酒が県内清酒製造会社より商品化され ${ }^{5}$ ），現在も製造•販売されている。ナラノヤエザクラ酵母を使用した清酒は，低アルコールで甘みはあるものの，リンゴ酸やコハク酸の含有量が高く，しっかりとした酸味のあるフルーティーな味わいであることが特徴である。しかし，ナラノヤエザク ラ酵母は特許出願から現在に至るまで県内清酒製造会社1者のみの使用に留まっており，本酵母の新たな活用方法を見出すことが課題となっていた。

一方，近年のクラフトビールブームの影響もあり，国内 の地ビール製造場数が 184 （平成 29 年）から 405 （令和 2 年） と顕著に増加しており ${ }^{\text {6 }}$ ，奈良県内のクラフトビール醸造所も増えてきている。このような背景のもと，ナラノヤエ ザクラ酵母をビール醸造に適用できないか検討したところ，本酵母は麦汁中で良好なアルコール発酵能を示し，ビール醸造に適用可能であることを見出した。 さらに，遺伝子解析の結果，ナラノヤエザクラ酵母は，Saccharomyces cerevisiae の変種である Saccharomyces cerevisiae var． diastaticus（S．diastaticus）であることが強く示唆され，ベ

ルギービールの 1 つであるセゾンスタイル 7）のビール醸造に利用可能な酵母であることが示唆されたので報告する。

2．実験方法

2.1 使用酵母及び培地

酵母は，県有酵母のナラノヤエザクラ酵母及び山乃かみ酵母，市販ビール酵母の SafAle US－05（Fermentis 社）， LalBrew Belle Saison（Lallemand 社），SafAle WB－06 （Fermentis 社）を使用した。培地は，YPD 培地（グルコー ス 2% ，ペプトン 2% ，酵母エキス 1% ），SMal 培地（マ ルトース 2% ，Yeast nitrogen base w／o amino acid 0.67% ）を使用した。

2.2 マルトース発酵試験

ナラノヤエザクラ酵母，山乃かみ酵母及び US－05 を YPD 5 mL で $30^{\circ} \mathrm{C}$ ， 100 rpm で一晚前培養させ，集菌後，滅菌水で 2 回洗浄し，滅菌水に再懸濁させた。再懸濁液を SMal培地 10 mL に $\mathrm{OD}_{600}=1 / \mathrm{mL}$ となるよう添加後， $20^{\circ} \mathrm{C}$ で 7 日間静置培養し，Brix の経時変化を測定した。

2.3 麦汁発酵試験

2．3．1 麦汁調製

粉砕済みの北米産ベースモルトを 2 kg に水 6 L を添加し， $50{ }^{\circ} \mathrm{C}$ で 30 分間加熱後， $65{ }^{\circ} \mathrm{C}$ で 90 分間加熱し，さらに $85^{\circ} \mathrm{C}$ で酵素失活させて糖化液を調製した。糖化液をステン レスざるで粗ろ過後，粗ろ液にペレット状のカスケードホ

[^0]ップ 17 g 添加し， 60 分間煮沸した。募沸後は $4^{\circ} \mathrm{C}$ で一晚保管し，上清を麦汁原液とした。その後，麦汁原液を Brix 14 になるように滅菌水を添加して麦汁を調製した。

2． 3.2 麦汁発酵試験

ナラノヤエザクラ酵母及びUS－05をYPD 5 mL で $30^{\circ} \mathrm{C}$ ， 100 rpm で一晚培養後，培養液 $400 \mu \mathrm{~L}$ を YPD 40 mL に添加 し， $30{ }^{\circ} \mathrm{C}, 100 \mathrm{rpm}$ で 24 時間培養した後，集菌後滅菌水 で 2 回洗浄した。得られた菌体を滅菌水 10 mL に再懸濁さ せ，麦汁 500 mL に $\mathrm{OD}_{600}=0.2 / \mathrm{mL}$ となるように菌体懸濁液 を添加し， $20^{\circ} \mathrm{C}$ で 21 日間静置培養した。培養液の重量変化を CO_{2} 減量として計測し， CO_{2} 減量をモニターすること によって，発酵能を評価した．発酵終了後，発酵液を 10,000 rpm で 15 分間遠心分離し，上清をビールとした。アルコ メイト AL－2（理研計器株式会社）を用いて，ビール中のア ルコール濃度を測定した。また， pH ，比重，Brixを，それ ぞれ，コンパクト pH メーター B－211（株式会社堀場製作所）あまからメイト DA－120（京都電子工．業株式会社）， PR－101 $~($ 株式会社アタゴ）を用いて測定した。

2． 4 PCR 法による $S T A 1+$ 株の簡易識別

STA1＋株の簡易識別には，Krogerus ら，Yamaguchi らが報告している既知のプライマーペア STA1＿1055＿F（5＇－ CCCAAAATTCATTCGTAGCC－3＇）8）と SD－6B（ 5＇－ GATGGTGACGCAATCACGA－3＇）9）を使用し，STA1 及び プロモーター領域の一部を増幅させた。鋳型 DNA には， ナラノヤエザクラ酵母のほかに，ネガティブコントロール としてSTA1—株の US－05，ポジティブコントロールとして STA1＋株の Belle Saison，弱い STA1＋株の WB－06 の gDNA を使用した。gDNA は，Gen とるくんTM（酵母用）High Recovery （タカラバイオ株式会社）を使用して抽出した。鋳型DNA （ $0.5 \mu \mathrm{~g}$ 未満）に，TaKaRa Ex Premier ${ }^{\text {TM }}$ DNA Polymerase（タ カラバイオ株式会社） $10 \mu \mathrm{~L}$ を添加し，各プライマーを 0.3 $\mu \mathrm{M}$ となるように加えて，滅菌水で総量 $20 \mu \mathrm{~L}$ に調製して， PCR 反応液とした．VeritiTM 96－Well Fast サーマルサイクラ ー（Thermo Fisher Scientific）を用いて， $94{ }^{\circ} \mathrm{C} 1$ 分，$\left(98^{\circ} \mathrm{C}\right.$ 10 秒， $60^{\circ} \mathrm{C} 15$ 秒， $68^{\circ} \mathrm{C} 90$ 秒）$\times 30$ サイクルで増幅し た。増幅させた PCR 産物は， 1.0 \％アガロースで電気泳動 し，泳動バンドを確認した。

3．結果及び考察

3.1 マルトース発酵試験

ビールの原料となる麦汁の糖組成は，グルコースが約 10%～ 15% ，マルトースが約 $50 \% ~ 60 \%$ ，マルトト リオースが約 15%～ 20% ，そのほか 4 糖以上の多糖類 が約 $20 \% ~ ~ 30 \%$ であり ${ }^{10) \text { ，マルトースが大半を占める }}$ ことから，ビール醸造にはマルトース発酵能が必須である

といえる。そこで，マルトース発酵能の有無を調査するた め，マルトースを唯一の炭素源とする最少培地（SMal 培地） を用いて発酵試験を行った。

その結果，ナラノヤエザクラ酵母の発酵では，発酵 1 日目に Brix が減少した（図 1）。SMal培地は炭素源がマルト ースのみであることから，Brix の減少はマルトースの消費 とみなすことができ，ナラノヤエザクラ酵母はマルトース発酵能を有することが示された。さらに，ナラノヤエザク ラ酵母の発酵では，市販ビール酵母の US－05 と比較して，発酵初期の Brix 減少量はわずかに劣るものの，ほぼ同様の減少傾向が見られ，市販ビール酵母と同等のマルトース発酵能を有することが示唆された。一方，同じく県有酵母で ある山乃かみ酵母の発酵では，発酵5日目まではBrix の減少がなく，マルトース発酵能が低いことが明らかとなっ た。

図1 マルトース発酵試験における Brix 経時変化

3.2 麦汁発酵試験

ナラノヤエザクラ酵母はビール酵母と遜色ないマルトー ス発酵能を有していたので，ビールの原料である麦汁を用 いた発酵試験を行った。ナラノヤエザクラ酵母及び US－05 を用いた発酵試験での経時的な累積 CO_{2} 発生量（A）と重量測定時点での単位時間当たりの CO_{2} 発生量の経時変化 （B）を図 2 に示す。

図2 麦汁発酵試験における CO_{2} 発生量
ナラノヤエザクラ酵母及び US－05 を用いた発酵では，い ずれも単位時間当たりの CO_{2} 発生量は発酵 2 日目に最大

となり， 4 日目以降は大幅に減少した。また，US－05 の発酵では 4 日目以降の CO_{2} 発生量が約 $0.01 \mathrm{~g} / \mathrm{h}$ で推移してお り，発酵 3 日目で発酵がほぼ完了していると考えられる。一方，ナラノヤエザクラ酵母の発酵では，発酵4日目以降 も約 $0.05 \mathrm{~g} / \mathrm{h}$ の高い CO_{2} 発生量を維持し，発酵 4 日目の時点で累積 CO_{2} 発生量は US－05 よりも少なかったものの，発酵7日目にはUS－05を上回った。

ビール中のアルコール濃度においては，ナラノヤエザク ラ酵母で醸造したビールの方が US－05 よりも高かった（表 1）。 さらに，初期比重と最終比重の差を初期比重で割るこ とで算出した発酵度においても，ナラノヤエザクラ酵母で醸造した方が高かった。また，ナラノヤエザクラ酵母で醸造したビールの pH は US－05 より低く，酸味が強いビール であることが示唆された。

表1 麦汁発酵試験結果

	ナラノヤエザクラ酵母	US－05
アルコール（\％）	6.25	5.90
初期比重	1.0560	1.0560
最終比重	1.0073	1.0104
発酵度（\％）	87	81
pH	4.3	4.6

3．3 PCR 法によるSTA1＋株の簡易識別

ビール酵母には，エールビールを醸造するための上面発酵酵母とラガービールを醸造するための下面発酵酵母の大 きく 2 種類が知られている。上面発酵酵母は，その大半が S．cerevisiae に属していて，そのうち S．cerevisiae の変種で ある S．diastaticus は，一部のビールスタイルで使用されて いる ${ }^{11)}$ ．S．diastaticus は，分泌性グルコアミラーゼを産生 することから，多糖類を発酵に利用できる酵母であり，麦汁中で高いアルコール発酵性を示す。ナラノヤエザクラ酵母は，麦汁発酵試験において高い発酵性を示したことから， PCR 法による簡易識別により，S．diastaticusかどうかを確認 した。

S．diastaticus は，分泌性グルコアミラーゼをコードする STA1 遺伝子を所有するため，STA1 の有無を調べることで識別が可能である ${ }^{9)}$ 。 さらに，最近，Krogerus らは，STA1 のプロモーター領域に $1,162 \mathrm{bp}$ の欠損がある場合，STA1＋株であっても表現型が弱くなるため，STA1 及びプロモータ一領域の一部を増幅させることで，$S T A+$ 株，弱い $S T A 1+$ 株，

図4 STA1＋株の簡易識別方法

STA1－株の識別が可能であることを報告しており ${ }^{8)}$ ，同様 の方法でナラノヤエザクラ酵母の簡易識別を行った（図4）。

図5 簡易識別結果
その結果，ナラノヤエザクラ酵母は，STA1＋株の Belle Saisonと同じ約 2.6 kbp の増幅 DNA 断片が確認され，完全 なプロモーター領域を所有するSTA1＋株であることが示唆 された（図5）．さらに，麦汁発酵試験の結果も考慮すると， ナラノヤエザクラ酵母はS．diastaticusであることが強く示唆された。

S．diastaticus は，瓶詰めや缶詰め後のビールに混入して いた場合，容器内に残存する多糖類により発酵してしまい，破裂事故等につながることから，腐敗酵母として認識され ている ${ }^{10)}$ 。しかし，その高いアルコール発酵能から一部の ビールスタイルでは本酵母が好んで用いられている。特に， ベルギービールの 1 つであり，近年人気となっているセゾ ンスタイルビールでは，S．diastaticusが使用されている ${ }^{10}$ 。 このことから，ナラノヤエザクラ酵母もセゾンスタイルビ ールに利用可能な酵母であることが示唆された。

4．結言

本研究では，県有酵母であるナラノヤエザクラ酵母につ いて，清酒醸造以外の新たな活用方法を見出すために，ビ ール醸造への適用を検討した。主な結果は以下の通りであ る。
（1）ナラノヤエザクラ酵母は，SMal 培地を用いた発酵試験において，市販ビール酵母 US－05 と遜色ないマル トース発酵性を有することが確認された。
（2）ナラノヤエザクラ酵母は，麦汁発酵試験において，市販ビール酵母 US－05 よりも高いアルコール発酵能を示した。
（3）ナラノヤエザクラ酵母は，PCR 法による簡易識別に より，S．cerevisiae の変種であり，セゾンスタイルビ ールで多く用いられるS．diastaticus であることが強 く示唆された。

以上の結果より，ナラノヤエザクラ酵母はセゾンスタイ ルビールに利用可能な酵母であることが示唆され，清酒醸

造以外の活用方法を新たに見出すことができた。

参考文献

1）大橋正孝，都築正男，清水浩美，松澤一幸，藤野千代，鈴木孝仁，岩口伸一，＂ナラノヤエザクラの花からの有用な酵母の分離及びそれを使った清酒の開発＂，奈良県産業振興総合センター研究報告，No．35，35－38， 2009

2）都築正男，大橋正孝，清水浩美，＂ササユリからの酒造用酵母の分離とその醸造特性＂，奈良県産業振興総合 センター研究報告，No．41，5－11， 2015

3）藤野布久代，西尾実紗，都築正男，特許第 7002077 号， ＂クズの花から分離した酵母の取得方法，クズの花か ら分離した酵母，この酵母を用いた清酒の製造方法及 びその他の飲食物の製造方法＂，株式会社井上天極堂，奈良県

4）松澤一幸，清水浩美，大橋正孝，都築正男，岩口伸一，鈴木孝仁，特許第4601015号，＂ナラノヤエザクラの花 から分離した酵母，この酵母を用いた清酒の製造方法及びその他の飲食物の製造方法＂，奈良県，国立大学法人奈良女子大学

5）岩口伸一，＂奈良八重桜から分離した花酵母でつくつ た爽やかな旨味の清酒＂，生物工学，87，7，356－357， 2009
6）国税庁，酒のしおり（令和 4 年 3 月）
7）Poelmans，E．，Taylor，J．，＂Belgium＇s historic beer
diversity：Should we raise a pint to institutions？＂，J．
Institutional Econ．，15（4），695－713， 2019
https：／／doi：10．1017／S1744137419000080
8）Krogerus，K．，Magalhães，F．，Kuivanen，J．，Gibson，B．，＂A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1＋Saccharomyces cerevisiae strains＂，Appl．Microbiol．Biotechnol．，103，7597－7615， 2019
https：／／doi．org／10．1007／s00253－019－10021－y
9）Yamauchi H，Yamamoto H，Shibano Y，Amaya N，Saeki T， ＂Rapid methods for detecting Saccharomyces diastaticus， a beer spoilage yeast，using the polymerase chain reaction＂，J．Am．Soc．Brew．Chem．，56，58－63， 1998 https：／／doi．org／10．1094／ASBCJ－56－0058
10）Stewart，G．G．，＂Saccharomyces species in the Production of Beer．＂，Beverages，2，34， 2016
https：／／doi．org／10．3390／beverages2040034
11）Krogerus，K．，Gibson，B．，＂A re－evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing＂，Appl．Microbiol．Biotechnol．，104，3745－3756， 2020
https：／／doi．org／10．1007／s00253－020－10531－0
12）Kim TS，Kim HY，Yoon JH，Kang HS，＂Recruitment of the Swi／Snf complex by Ste12－Tec1 promotes Flo8－Mss11－mediated activation of STA1 expression＂，Mol． Cell．Biol．24，9542－9556，2004a
https：／／doi．org／10．1128／MCB．24．21．9542－9556．2004

[^0]: ＊1）バイオ・食品グループ

