ヤマトトウキ葉の生育に伴う含有成分の変動

立本 行江*1) , 首藤 明子*1) , 大橋 正孝*1)

Changes in the components contained by the growth of *Angelica acutiloba* leaves

TATSUMOTO Yukie $^{\ast 1)}$, SHUTO Akiko $^{\ast 1)}$, OHASHI Masataka $^{\ast 1)}$

奈良県産ヤマトトウキ葉の有用な食利用のため、ヤマトトウキの栽培比較を行い、生育による含有成分の変動を確認した.葉に含まれる成分のうち、抗酸化作用を持つビタミンE(α-トコフェロール)や、血流に関わる精油成分リグスチリドは生育が進む夏に向けて増加した.リラックス効果をもつ遊離アミノ酸のγ-アミノ酪酸(GABA)は48.0~84.7 mg/100g乾燥重で含量推移し、これらの成分は生育期間をとおし摂取が 有効であると判明した.抽苔すると含有成分の減少や、味覚に苦みが増加することから、成分が増加する 夏など、採取時期を考慮した摂取方法や製品化への取り組みが必要である.

1. 緒言

ヤマトトウキ Angerica actiloba Kitagawa はセリ科シシウ ド属の多年草で,奈良県では17世紀より優良なヤマトトウ キが栽培されてきた¹⁾.根を乾燥させて得られる生薬の当 帰は当帰芍薬散や加味逍遙散等の漢方薬に配合されている.

ヤマトトウキは、奈良県が実施する漢方のメッカ推進プロジェクトの重点薬用植物であり、葉の食用が可能となったことから様々な食品商品が市場に出ており、当センターではこれら漢方関連商品の技術支援に関わる研究を進めているところである^{2~6}.

今回, ヤマトトウキ葉の成分が生育に伴いどのように変 動するかを確認し, 効率的な採取, 摂取時期を把握するこ とで,さらなる機能性を持つ製品につなげることを目指し, ヤマトトウキ葉に含まれるビタミンEのα-トコフェロール, 精油成分のフタライド類, フロクマリン類, 遊離アミノ酸 38種, 並びに味覚センサーで味覚を測定し, 生育による含 有成分の変動推移を確認した結果を報告する.

2. 実験方法

2.1 試料

ヤマトトウキは奈良県産業振興総合センター内圃場(畝 幅 80cm,株間 60 cm)及び植木鉢(直径 15c m,高さ 20 cm プラスチック製)に 2022 年 3 月 22 日定植し栽培した.苗 は奈良県果樹・薬草研究センターから提供された 2 年生の ものを用いた.土の種類,肥料の配布時期,水やりを同様 に行い,4 月から 10 月まで 30 日周期で 3 株同一株から均 一に葉を採取し試料とした.

露地栽培の1株は、5月下旬に抽苔したが、葉は生育し

たことから抽苔葉の成分分析を同様に実施した.

採取葉は, -20 ℃で凍結後, 凍結真空乾燥機(日本真空 技術(株)製 DF2-01H 型及び東京理化器械(株)製 EYELA FDU-2100)で乾燥(真空度 0.1 Torr 以下,加熱温度 25 ℃)後,粉砕器(輸入発売元(株)東京ユニコム T-429) で粉砕し, 500 µm のふるいを通過したものを検体とした. 検体は測定まで -20 ℃で保管した.

2.2 分析方法

2.2.1 ビタミンE (α-トコフェロール)

分析条件を表1に示す.

試料約1gを取り, エタノール (99.5) を 20 mL 添加し 30 分間超音波振とう後, 遠心分離 (10,000 rpm×10 min) し, 上層をナスフラスコへ分取し, この操作を 2 回繰り返した. 減圧蒸留後, 残留物をエタノール 1 mL で溶解した. この 液を孔径 0.45 μm のメンブランフィルターを用いてろ過し 分析試料とした.

標準品には富士フイルム和光純薬(株)製ビタミンE定 量標準試薬を用いた.

表 1 α-トコフェロール分析条件

装置	Waters社製 (LC)ACQUITY UPLC TM
カラム	SUPELCOSIL-ABZ+PLUS, 粒子径 5 μm 内径4.6 mm×長さ150 mm
検出器	UV 285nm
移動相	メタノール/水 (46:4)
カラム温度	35 °C
注入量	20 µL
流速	0.8 mL/min

2.2.2 フタライド類, フロクマリン類

分析条件を表2に示す. 試料約 0.1 g を取り, LC-MS 用メタノール:超純水=

技術資料

(4:1) を 10 mL 加え, 10 分おきにボルテックスミキサー で攪拌しながら超音波振とうを 30 分間行った. その後遠 心分離 (3000 rpm×10 mm) し,上澄み液を孔径 0.45 μm の メンブランフィルターを用いてろ過し,分析試料とした.

標準品は Ligustilide (富士フイルム和光純薬(株)製 100 μ g/mL メタノール溶液 500 μ L アンプル入り), Butylidenephthalide (シグマ・アルドリッチ製), Psoralen, Xanthotoxin, Bergapten (東京化成工業(株)製)を用いた.

表2 フタライド類、フロクマリン類分析条件

装置	㈱島津製作所製 LC-MS2010EV								
カラム	Inertsil ODS-3, 粒子径 3 µm内径2.1 mm×長さ150 mm								
検出器	UV 300nm								
移動相	UV 300nm A:0.1%ギ酸入りアセトニトリル B:0.1%ギ酸入り超純水								
	B:0.1%ギ酸入り超純水								
グラジエント条件	0-10min(A:B=40:60)→10-40min(A:B=50:50) 45分分析								
カラム温度	40 °C								
注入量	1 µL								
流速	0.25 mL/min								

2.2.3 遊離アミノ酸

分析条件を表 3,分析可能な遊離アミノ酸数を表 4 に示 す.(本分析法による分析可能な遊離アミノ酸数は 38 種類 である.)

試料約 0.1 g に LC-MS 用メタノール: 超純水= (4:1) を 10 mL 加え 10 分おきにボルテックスミキサーで攪拌し ながら超音波振とう 30 分間行い,その後遠心分離 (3,000 rpm×10 min)し,上澄み液を孔径 0.45 μm メンブランフィ ルターを用いてろ過したものを試料とした.

試料前処理として, Mixtube (1.4 mL 島津サイエンス) にアセトニトリル 50 μL, 試料 25 μL, 内部標準混合溶液と して APDS タグ®ワコー用遊離アミノ酸内部標準混合液 No.1:No.2=6.5:0.5 を 25 μL 入れ撹拌し試料溶液とした.

試料溶液 10 µL に, APDS TAG[®]ワコー用ほう酸緩衝液 185 µL,反応試薬遊離アミノ酸分析試薬 (LC-MS 用) APDS タグ[®]12 mg/ mL アセトニトリル溶液 5 µL を加えて, 60 ℃ で5 分間,誘導体化反応を行い,4 µL を LC-MS に注入し た.

標準混合溶液として遊離アミノ酸混合標準液 B 型, 遊離 アミノ酸混合標準液 AN-II型, システイン酸, グルタミン, アスパラギン, トリプトファン, テアニン(すべて, 富士 フイルム和光純薬(株)製)を混合し 500 ppm に用時調製 し, これを 100 ppm, 10 ppm に段階希釈し, 検量線とした.

表3 遊離アミノ酸分析条件

機器	㈱島津製作所製 LC-MS高速アミノ酸分析システム(UF-Amino Station)
カラム	Shim-pack UF-AMINO 2.1 mm×100 mm
移動相A	APDS TAG®ワコー用溶離液
移動相B	アセトニトリル
	$0 \min (A:B=98:2) \rightarrow 0.01 \min (A:B=94:6) \rightarrow 2 \min (A:B=94:6)$
グラジエント条件	$\rightarrow 6 \min$ (A:B=70:30) $\rightarrow 6.1 \min$ (A:B=40:60) $\rightarrow 7 \min$ (A:B=
	$40:60) \rightarrow 7.01 \min(A:B=98:2)$
流量	0.3 mL/min
カラム温度	40 °C
注入量	4 μL
イオン化	ESI positive
測定モード	SIM
DL温度	250 °C
ネブライザーガス流量	1.5 L/min
ヒートブロック温度	200 °C
ドライングガス流量	10 L/min

表4 分析遊離アミノ酸

衣 4	万仞近離アミノ酸	
化合物名		m/z
1 CysAc	システイン酸	290.1
2 Asp	アスパラギン酸	254.1
3 Glu	グルタミン酸	268.1
4 a-AAA	α-アミノアジピン酸	282.1
5 HyPro	ヒドロキシプロリン	252.1
6 Asn	アスパラギン	253.1
7 Ser	セリン	226.1
8 Gly	グリシン	196.1
9 Gln	グルタミン	267.1
10 Sar	サルコシン	210.1
11 His	ヒスチジン	276.1
12 Tau	タウリン	246.1
13 Thr	スレオニン	240.1
14 Cit	シトルリン	296.1
15 Ala	アラニン	210.1
16 1-MetHis	1-メチルヒスチジン	290.1
17 Car	カルノシン	347.1
18 Arg	アルギニン	295.1
19 GABA	γ-アミノ酪酸	224.1
20 3-MetHis	3-メチルヒスチジン	290.1
21 Ans	アンセリン	361.1
22 b-AiBA	3-アミノイソ酪酸	224.1
23 Pro	プロリン	236.1
24 EtOHNH2	エタノールアミン	182.1
25 a-ABA	α-アミノ酪酸	224.1
26 Theanine	テアニン	295.1
27 Cysthi	シスチン	463.1
28 Cys2	シスチジン	481.1
29 Tyr	チロシン	302.1
30 Val	バリン	238.1
31 HyLys	ヒドロキシリジン	403.1
32 Met	メチオニン	270.1
33 Orn	オルニチン	373.1
34 Lys	リジン	387.1
35 Ile	イソロイシン	252.1
36 Leu	ロイシン	252.1
37 Phe	フェニルアラニン	286.1
38 Trp	トリプトファン	325.1

2.2.4 味覚の分析

試料1gを水100mLに溶解した水溶液をサンプルとして 用いた.味覚センサー(インテリジェントセンサーテクノ ロジー(株)製 TS-5000Z)を用いて,4月採取試料を基準 とし,各月の水溶液の味覚を測定した.測定に使用したセ ンサーを表5に示す.

センサー名	味評価値						
	先味	後味					
AAE	旨味	旨味コク					
СТО	塩味						
CAO	酸味						
COO	苦味雑味	苦味					
AE1	渋み刺激	渋み					

表 5 分析遊離遊離アミノ酸

3. 結果及び考察

3.1 $\forall s \geq v \in (\alpha - b = n = n = n)$

ビタミンE(α-トコフェロール)の結果を図1に示す.

α-トコフェロールは抗酸化作用があり、血流改善、脂質 の過酸化防止や細胞壁及び生体膜の機能維持に関与するビ タミンである⁷⁾.

露地栽培のα-トコフェロール量は4月18.4 mg/100g乾燥 重から9月には44.7 mg/100g乾燥重となり,生育により含 有量の増加を確認した.一方,鉢植え栽培のα-トコフェロ ール量は,4月は25.7 mg/100g乾燥重で,露地栽培より含 有量が高かったが,7月に増加ピーク38.9 mg/100g乾燥重 を迎え,それ以降9月には13.5mg/100g乾燥重まで減少し た.抽苔株のα-トコフェロール量は,抽苔後,7月に向け て含有量が10.9 mg/100gに減少し,その後やや増加した.

α-トコフェロールの含有量は、生育が進む夏に向けて上 昇した.4月の含有量と8月の含有量に差を確認できたこ とから、夏の成葉はα-トコフェロールを摂取しやすいこと が判明した.

mg/100g 乾燥重

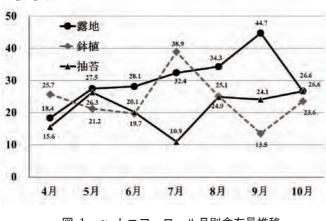


図 1 α-トコフェロール月別含有量推移

3.2 フタライド類, フロクマリン類

フタライド類の生育変動定量結果を図 2 に示す. 測定し たフタライド類は、ほぼリグスチリドの定量値となった. リグスチリドはトウキ葉の特徴的な香りをもたらす精油 成分であり、トウキの血流改善に寄与する成分といわれている^{8,9}.

どの栽培方法も4月の若い葉に500 mg/100g 乾燥重以上 フタライド類が含有し、5月に含量が下がった後、7月に露 地栽培(541.9 mg/100g 乾燥重)、鉢植え栽培(487.9 mg/100 g 乾燥重)、抽苔株(749.2 mg/100g 乾燥重)で増加し、そ の後減少傾向が見られた。

7月~9月の鉢植え栽培で,ブチリデンフタライドを検出した(0.9~1.1 mg/100g乾燥重).

リグスチリドは4月とその他各月に有意差はなく,生育 期間を通じて摂取が可能な成分と考えられる.

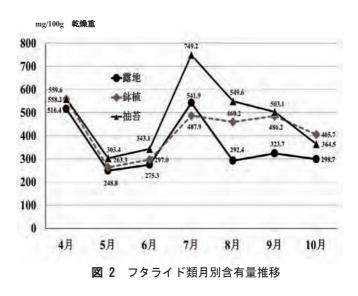
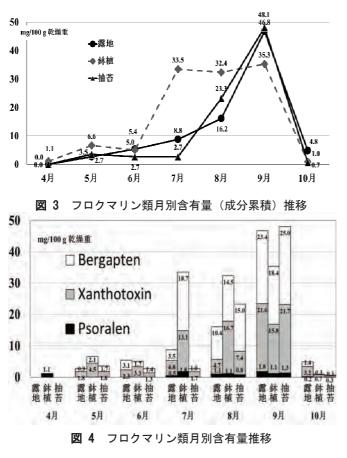
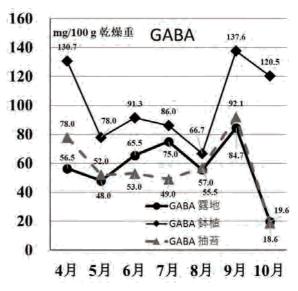



図3にフロクマリン類含量を、図4にフロクマリン類の 組成(プソラレン、キサントトキシン、ベルガプテン)を 示す.

植物がストレスを受けると、ファイトアレキシンという ストレス化合物を作る.ファイトアレキシンは、植物自体 の病害抵抗性に重要な役割を果たすと考えられており、ト ウキのファイトアレキシンにはフロクマリン類のプソラレ ン、キサントトキシン、ベルガプテンがある¹⁰⁾.これらは光 毒性を有し、これまでの調査で気候の温度上昇等で増加す ることを見出している⁵⁾.

露地栽培のフロクマリン類含量は、4月から7月まで0.0 ~8.8 mg/100g乾燥重の間を推移していたが、生育に伴い 増加し9月に46.7 mg/100g乾燥重まで増加した.鉢植栽培 のフロクマリン類含量は、は4月~6月まで1.1~6.6 mg/100 g乾燥重で推移し、露地栽培より1ヵ月早く7月に33.5 mg/100g乾燥重まで増加した.6月までどの栽培において もフロクマリン類含量が低く推移していたが、7月~9月に かけて増加した後、10月には減少した.

3.3 遊離アミノ酸


遊離アミノ酸分析結果を表9に示す.

遊離アミノ酸はタンパク質を構成する栄養素であるに加 え、機能性成分の働きとしてヘルスケアや、美肌、スポー ツ、シニアの健康維持などの領域に期待される物質である. これまでに食品中に含まれる遊離アミノ酸に関する成分表 は取りまとめられているが、漢方関連素材の食利用部にか かる遊離アミノ酸の分析はデータが極めて少ない状況であ る.

表9に示すように、ヤマトトウキ葉に、アスパラギン酸 (Asp),グルタミン酸(Glu),α-アミノアジピン酸(a-AAA), ヒドロキシプロリン (HyPro),アスパラギン (Asn),セリ ン (Ser),グリシン (Gly),グルタミン (Gln),サルコシ ン (Sar),スレオニン (Thr),アラニン (Ala),アルギニ ン (Arg),γ-アミノ酪酸 (GABA), 3-アミノイソ酪酸 (b-AiBA),プロリン(Pro),エタノールアミン(EtOHNH2), チロシン (Tyr),バリン (Val),メチオニン (Met),リジ ン (Lys),イソロイシン (Ile),ロイシン (Leu),フェニ ルアラニン (Phe),トリプトファン (Trp)の24 種類の遊 離遊離アミノ酸が含有していた.

栽培方法にかかわらず 4 月の葉にアスパラギン酸, GABA, アラニン, セリン, グルタミン, グルタミン酸な どが多く含まれており, 成長が進む夏に向けて含有量が減 少, 若しくは横ばいになる傾向が確認された. GABA に注目すると, 露地栽培の GABA 含量は4月から 9月まで48.0~84.7 mg/100g 乾燥重で推移し(図5), γ-ア ミノ酪酸(GABA)の含有量が多いとされるメロン(63.0 ~96.3 mg/100g), やトマト缶(95 mg/100g)等とほぼ同程 度であった^{7,11}).

GABA は興奮状態を抑え,精神を安定させ,リラックス 効果や血圧を下げる効果があるといわれている¹²⁾.4月か ら9月の含有量に優位差がなく,秋までの生育期間を通し てヤマトトウキ葉から GABA を摂取できると考える.

図 5 γ-アミノ酪酸(GABA)月別含有量推移

3.4 味覚センサー結果

味覚センサー測定結果を図 6,7 に示す.6月と10月の データは7月及び9月とほぼ同様であったため省略している.

ヒトの官能評価試験の場合, 複合的に味をとらえるため, 強度の弱い呈味については, 捉えられない可能性もある. また環境的, 心理的要因に左右され, 再現性が取れた評価 が難しい場合もある.味覚センサーは各呈味に対応する独 立したセンサーがあり, 各呈味を個別にとらえることが出 き,数値として再現よく各呈味を評価できると考えられる.

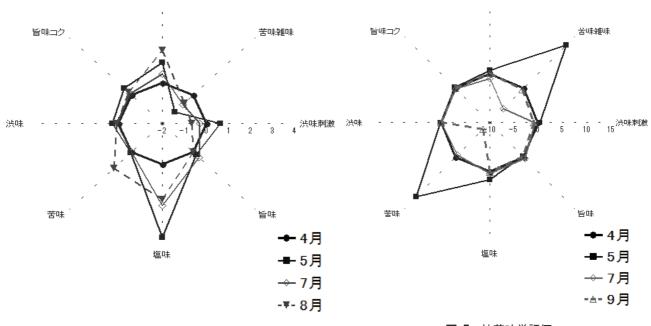

今回,ヤマトトウキ葉の生育による味の差を評価した. 酸味,苦味雑味,渋味刺激,旨味,塩味は「先味」として ロに入ったときに感じる味わいで,旨味コク,渋味,苦味 は「後味」として飲み込んだ後にも続く味わいとなる¹³⁾.

図 6は露地栽培株の4月の葉を対照として,生育する月 ごとの差のグラフとして示した.1メモリ差があると,人 が味の差をはっきりと感じることができる差となる¹³⁾.

8月の葉は4月の葉と比較して,塩味,酸味共に2目盛 り高い値を示した.一方,苦味雑味,渋味刺激は弱くなる 傾向が見られた.特に5月の葉は4月の葉と比較して,強 い塩味,渋み刺激,酸味は1目盛り以上の差が見られた.

								単位:mg/100g乾燥重(n=3)										
	アスパラギン酸(Asp)			グルタミン酸(Ghu) α-アミ			α-アミノア	アミノアジピン酸(a-AAA) ヒドロキシプロリン(Hyl			(HyPro)	アスノ	パラギン(♪	(sn)	セリン(Ser)			
	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔
4月	178.4	467.3	184.2	58.5	60.3	25.0	0.0	0.3	0.0	0.0	0.0	12.0	11.0	78.7	12.0	48.5	90.7	37.0
5月	3.5	47.3	6.0	23.5	54.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.3	0.0	20.0	54.3	14.0
6月	9.0	19.3	8.0	34.0	23.0	24.0	0.0	0.0	0.0	0.0	0.0	1.0	6.5	14.3	1.0	32.5	45.0	23.0
7月	23.0	24.0	14.0	24.5	12.7	7.0	0.0	0.0	0.0	0.0	0.0	3.0	20.5	8.3	3.0	30.5	36.7	15.0
8月	9.5	17.0	16.0	21.0	22.0	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.3	0.0	11.0	17.3	12.0
9月	21.0	31.7	15.8	8.7	4.3	6.3	0.0	0.0	0.0	0.0	0.1	9.7	10.0	14.7	9.7	31.7	37.5	33.7
10月	27.1	84.8	32.0	94.2	187.4	104.3	0.0	0.0	2.4	2.9	4.1	7.0	8.7	23.0	7.0	38.7	70.4	25.5
	グ	リシン(Gly	r)	グノ	レタミン (Gl	n)	サルコシン		ar)	スレオニン(Thr)		アラニン(Ala)			アルギニン(Arg)			
	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔
4月	0.0	11.3	0.0	20.5	122.7	12.0	0.0	0.0	0.0	8.5	29.3	11.0	34.3	46.0	39.0	0.0	3.3	0.0
5月	0.0	3.3	0.0	3.5	164.3	5.0	0.0	0.0	0.0	4.0	14.7	4.0	24.7	42.3	25.0	6.0	37.0	4.0
6月	0.5	3.0	0.0	31.5	95.0	13.0	0.0	0.0	0.0	8.0	13.3	5.0	30.0	53.0	24.0	8.0	10.7	6.0
7月	2.5	4.0	2.0	117.0	20.3	15.0	0.0	0.0	0.0	10.0	10.3	5.0	29.7	42.3	23.0	3.5	4.3	1.0
8月	0.0	0.0	0.0	4.0	12.0	5.0	0.0	0.0	0.0	5.5	9.0	5.0	26.3	25.3	27.0	0.5	2.0	1.0
9月	3.5	5.6	4.2	22.8	35.0	22.5	0.0	0.0	0.0	9.5	12.9	10.3	40.9	67.6	42.4	0.0	0.0	0.0
10月	4.6	9.8	4.4	30.8	220.0	17.2	8.1	8.8	7.7	12.4	22.8	10.8	15.3	39.9	14.2	0.0	7.6	1.0
		ノ酪酸(G			イン酪酸(b		プロリン(Pro)			エタノールアミン(EtOHNH2)		チロシン(Tyr)			バリン (Val)			
	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔
4月	56.5	130.7	78.0	0.0	0.0	0.0	1.5	152.0	4.0	22.0	28.3	30.0	2.5	23.0	6.0	4.5	36.7	10.0
5月	48.0	78.0	52.0	0.0	0.0	0.0	1.5	18.3	1.0	13.5	18.0	15.0	0.5	8.7	0.0	3.0	15.3	4.0
6月	65.5	91.3	53.0	0.0	0.0	0.0	2.5	7.7	2.0	22.0	25.3	20.0	2.5	6.3	0.0	8.0	15.0	4.0
7月	75.0	86.0	49.0	94.0	108.3	62.0	3.0	4.0	2.0	22.0	25.7	17.0	8.0	6.3	4.0	9.0	12.7	8.0
8月	55.5	66.7	57.0	69.0	83.7	71.0	2.5	3.0	2.0	15.5	18.7	15.0	1.0	1.7	2.0	6.5	8.3	7.0
9月	84.7	137.6	92.1	0.0	0.0	0.0	5.4	7.6	5.5	28.6	35.5	31.6	7.0	9.1	7.7	10.4	14.1	10.6
10月	19.6	120.5	18.6	0.0	0.0	0.0	7.4	14.3	10.8	8.6	22.3	7.2	8.9	16.9	8.6	9.9	19.8	7.2
		オニン(M			ジン(Lys)			ロイシン()		ロイシン(Leu)		フェニルアラニン(Phe)				[®] トファン (1	1	
	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔	露地	鉢植	抽苔
4月	0.0	8.3	3.0	0.5	43.0	6.0	0.5	28.7	4.0	3.5	55.7	22.0	5.0	43.0	13.0	0.0	16.7	0.0
5月	0.0	1.0	0.0	2.0	10.3	3.0	1.5	9.7	2.0	4.0	15.3	7.0	5.5	13.7	7.0	0.0	14.0	0.0
6月 7月	1.0	2.3	0.0	4.0	8.7	2.0	4.5	8.7	2.0	7.5	16.3	1.0	8.5	13.3	4.0	0.0	4.0	0.0
7月 8月	1.5	2.7	2.0	2.0	6.3	1.0	6.5	8.0	6.0	2.5	9.0	3.0	10.0	11.3	8.0	2.0	4.7	1.0 0.0
8月 9月	0.0	0.0	0.0	4.5	5.7	5.0	2.5	3.3	2.0	13.0	15.0	15.0	9.5	9.7	11.0	0.0	0.0	
9月 10月	3.1	3.7	3.2	8.5	10.2	8.4	5.9	7.3	6.9	8.9	12.6	11.5	13.5	17.0	14.2	2.3	1.0	2.6
10月	6.7	12.1	6.8	9.2	16.9	7.7	8.4	14.1	7.4	7.4	26.3	7.5	13.3	24.4	11.4	9.7	10.6	8.1

表9 遊離アミノ酸分析結果

図6 露地栽培味覚評価

酸味

図7 抽苔味覚評価

酸味

塩味や酸味の強さは7月から9月まで1目盛り程度の変 動が見られるが,後味の苦味が8月には高いことから, 6月~7月頃の葉が苦味を感じずにトウキの味や風味を 伝えることが可能であると考えられる.既報¹⁾の7月の ヤマトトウキ葉の味覚検証でも,塩味と酸味が強く出て おり,今回の結果でも矛盾しない結果であった. 抽苔した株の葉を同様に味覚センサーで評価したとこ ろ,露地栽培(図6)の結果と異なり抽苔し始める5月 の葉の先味の苦味雑味や,後味の苦味がそれ以外と比較 して顕著に高かった.この結果より抽苔し始めると葉の 苦味が上昇し,7月以降,先味の苦味刺激が減少し,9 月には後味の苦味減少した.

葉の味覚が、季節や、抽苔などで変動することを考慮 し、採取・使用することが望まれる.

4. 結言

本研究での主な結果は次のとおりである.

- ヤマトトウキ葉のビタミン E (α-トコフェロール) は生育が進む夏に向かい含有量が増加し,9月頃 まで有効に摂取可能である.
- 血流に関わる精油成分リグスチリドは4月~10月の含有量に有意差がないことから、葉の生育時期にかかわらず、有効に摂取可能である。
- 3) ヤマトトウキ葉のフロクマリン類含量は7月頃か ら増加の傾向が見られた.
- キマトトウキ葉には、GABA、アラニン、セレン、 グルタミン、グルタミン酸等が含まれていた.特 にリラックス効果を持つGABAは4月から9月の ヤマトトウキ葉に48.0~84.7 mg/100g含まれてい た、このことから、ヤマトトウキ葉は、葉の生育 時期にかかわらず GABA を摂取できる素材と考 えられる.

ヤマトトウキ葉には血流にかかわる成分(リグスチ リド)や、リラックス効果などをもつ遊離アミノ酸 (GABA)が含まれている.葉には、これらの成分が 葉の生育時期にかかわらず、多く含まれているが、生 育状況による変動があるため、成分が増加する時期を 考慮した摂取や製品化への取り組みが必要である.

参考文献

- 宇高一郎,中村泰之,蔭山充,現代漢方生薬考一当 帰-,漢方研究,10,29-37,2005
- 2) 首藤明子、岡本雄二、大橋正孝、清水浩美、生薬の 医薬品以外の部位を食品に利用するための加工技 術の開発(第1報)、奈良県産業振興総合センター

研究報告, No.41, 37-40, 2015

- 3) 首藤明子、岡本雄二、大橋正孝、清水浩美、生薬の 医薬品以外の部位を食品に利用するための加工技 術の開発(第2報),奈良県産業振興総合センター 研究報告, No.43, 9-14, 2017
- 4) 首藤明子,大橋正孝,清水浩美,生薬の医薬品以外の 部位を食品に利用するための加工技術の開発(第3 報),奈良県産業振興総合センター研究報告,No.44, 6-9,2018
- 5) 首藤明子,清水浩美,藤田和代:生薬の医薬品以外の部位を食品に利用するための加工技術の開発(第4報),奈良県産業振興総合センター研究報告,No.45,20-24,2019
- 6) 首藤明子,大橋正孝,清水浩美,藤田和代:生薬の 医薬品以外の部位を食品に利用するための加工技 術の開発(第5報),No.45, 28-33, 2019
- 香川明夫監修,八訂食品成分表 2021,女子栄養大学 出版部,2021
- Chan SS, Cheng TY, Lin G, Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong in rat isolated aorta. J Ethnopharmacol, 111 (3), 677-680, 2007
- 9) H. Yorozu, H. Sato, Y. Komoto, The Effect of Crude Drug Extracts Bathing (III) -The effect of phthalides from Cnidii rhizome, The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine, 57(2), 123-128, 1994
- 10) 姉帯正樹,柴田敏郎,佐藤正幸,当帰の調整法と 化学的品質評価(第9報)ホッカイトウキ生根の 40°C乾燥による成分分量の増加,医薬品医療機器レ ギュラトリーサイエンス,41,736-741,(2010)
- 国立研究開発法人 農業・食品産業技術総合研究機 構 食品研究部門,機能性成分含有量データ, https://www.naro.go.jp/laboratory/nfri/contens/ffdb/ffdb _pdf/vagetables.pdf
- 佐々木泰弘,河野元信,ギャバ (GABA)の効能と 有効摂取量に関する文献的考察,美味技術研究会誌, No.15, 32-37, 2010
- インテリジェントセンサーテクノロジー(株) TS-5000Z, https://www.insent.co.jp/