第3章 調査研究・報告 第1節 原 著

温泉水の電気伝導率について

植田 直隆·市川 啓子

Electric Conductivity of Spring Water

Naotaka UEDA and Noriko ICHIKAWA

緒言

温泉水のように高濃度でイオン成分が含まれている場合,電気伝導率は各イオン濃度とその当量伝導率の 積の和から求めた計算値と測定値は一致しない.しかしKohlrauschの平方根則および近距離間のイオン相関 を考慮したDaviesの式から求めた電気伝導率の計算値と測定値はほぼ一致し,両者を比較することによって, 温泉水分析の精度管理に適用できることがわかった.一方,酸性雨のような低濃度の試料については $EC_{cal} = \Sigma \lambda_{G} \cdot C_{i}$ で十分説明できた.

緒言

酸性雨の分析では、データの精度管理として陽イオ ンと陰イオンのイオンバランスおよび各イオン成分か ら求めた計算値と測定値の電気伝導率(EC)の比較が用 いられている.一方、温泉水では陽イオンと陰イオン のイオンバランスは用いられるが、ECは精度管理に は一般に用いられていない.

そこで各イオン濃度とその当量伝導率の積の和, Extended Debye-Hückelの式およびDaviesの式から求 めたEC_{cal}と測定値のECを比較検討し,温泉水分析の 精度管理にECを用いた方法が適用できるかどうかを 検討した.

1. 使用データ

温泉データとしては下記に示すデータを用いた. な おそれらのデータのうち, ECが測定されていないデー タについては検討から省略した. また参考比較するた めに酸性雨のデータについても検討した.

法

方

函館のデータは北海道立地質研究所¹¹が分析した函 館市とその周辺地域の温泉で,検討には2005年分析 の30データを用いた.

神奈川のデータは神奈川県温泉地学研究所²⁰が分析 した神奈川県下の箱根湯本地区,箱根中央地区,箱根 山岳地区,湯河原地区,丹沢山地付近および臨海部付 近の温泉で,1988年から1996年分析の30データを用 いた. 岩手・宮城のデータは神奈川県温泉地学研究所³が 分析した2008年岩手・宮崎内陸地震の震源地周辺に おける温泉で震災後の2008年7月24日から26日分析の 7データを用いた.

新潟のデータは新潟県衛生公害研究所⁴⁾が分析した 新潟県下のデータで,1988年から1994年分析の30デー タを用いた.

奈良のデータは奈良県保健環境研究センターが分析 した奈良県下のデータで,1995年から2009年分析の 55データを用いた.

今回検討した温泉データでは、イオン濃度は陽イオ ン量と陰イオン量合わせて2.02meq/kg~1.15eq/kg, ECは0.11~43.2mS/cmであった.

また酸性雨については森林総合研究所⁵が平成11年 度に実施した林外雨の分析データ(73データ)を用い た.陽イオン量と陰イオン量合わせて0.054meq/kg~ 1.46meq/kg, ECは0.0035~0.130mS/cmであった.

検討に用いた項目はpH(水素イオン濃度), EC, Na⁺, K⁺, NH₄⁺, Mg²⁺, Ca²⁺, CO₃²⁻, HCO₃⁻, F⁻, Cl⁻, NO₃⁻およびSO₄²⁻である. その他にFe²⁺, Fe³⁺, Mn²⁺, Al³⁺, Zn²⁺, NO₂⁻およびPO₄³⁻についても分析 値がある場合は検討に用いた.

2. 計算方法

次の3式を用いて、EC_{cal}を計算した.

 EC_{cal}=Σ λ_{0i}·C_i··· 各イオン濃度とその当 量伝導率の積の和

2)
$$-\log f_i = \frac{A \cdot z_i^2 \cdot \sqrt{I}}{1 + B \cdot r_i \cdot \sqrt{I}}$$

・・・Extended Debye-Hückelの式

3)
$$-\log f_i = \frac{A \cdot z_i^2 \cdot \sqrt{I}}{1 + \sqrt{I}} - 0.2 \cdot A \cdot z_i^2 \cdot I$$

・・・Daviesの式⁶⁾

Daviesの式の最後の項の係数は、一般に0.3あるいは0.2が用いられているが、ここでは0.2を用いた.

なおExtended Debye-Hückelの式およびDaviesの式 でのEC_{cal}はf_iを用いて次式で計算される.その際用い る基本定数は表1に示した.

EC_{cal} =
$$\Sigma \lambda_{0i} \cdot f_i \cdot m_i$$

EC_{cal}: ECの計算値
 $f_i : イオンiの活動度係数$
A = 0.509 (25℃での値)
B = 0.329 (25℃での値)
 $r_i : イオンiのイオンサイズパラメータ- $z_i : イオンiの荷電数$
 $m_i : イオン濃度$
I:溶液のイオン強度 (I = 1/2 $\Sigma m_i \cdot z_i^2$)
 $\lambda_{0i} : 無限希釈におけるイオン当量伝導率$$

表1 計算に用いた基本定数

イオン名	当量イオン電導度	ハフ目	D	在大学
	$10^{-4} { m Sm}^2$	分十重	B•r _i	恤奴
H^{+}	349.81	1.008	3.0	1
Na^+	50.1	22.99	1.3	1
K^+	73.5	39.098	1.0	1
$\mathrm{NH_4}^+$	73.56	18.039	1.0	1
Mg^{2+}	53.05	24.312	2.6	2
Ca^{2+}	59.5	40.08	2.0	2
Fe^{2+}	53.5	55.847	2.0	2
Fe^{3+}	68.4	55.847	3.0	3
Mn^{2+}	53.5	54.938	2.0	2
Al^{3+}	63	26.982	3.0	3
Zn^{2+}	52.8	65.37	2.0	2
OH⁻	198.3	17.007	1.0	1
CO3 ²⁻	69.3	60.008	1.3	2
HCO3-	44.5	61.016	1.3	1
F	55.4	18.998	1.0	1
Cl	76.35	35.453	1.0	1
NO3-	71.46	62.004	1.0	1
NO_2^-	71.8	46.005	1.0	1
SO_4^{2-}	80.02	96.06	1.3	2
PO_{4}^{3-}	69.0	94.97	1.3	3

3. 精度管理

東アジア酸性沈着物モニタリングネットワークで は,1)イオンバランス(R₁),2) 電気伝導率バランス(R₂) について,次の基準を満たすことを提案している⁷⁾. 1) イオンバランス (Cation:陽イオン量, Anion: 陰イオン量) $R_1(\%) = 100 \times (Cation - Anion) / (Cation + Anion)$ (Cation + Anion): $< 50 \mu \text{ eq/L}$ の場合 $-30\% \leq R_1 \leq 30\%$ (Cation + Anion): $50 \sim 100 \mu \text{ eq/L} の場合$ $-15\% \leq R_1 \leq 15\%$ (Cation+Anion): >100 µ eq/Lの場合 $-8\% \leq R_1 \leq 8\%$ 2) 電気伝導率バランス (EC_{cal}:計算値, EC:測定値) $R_2(\%) = 100 \times (EC_{cal} - EC) / (EC_{cal} + EC)$ EC: $< 5 \mu$ S/cmの場合 $-20\% \le R2 \le 20\%$

EC:5~ 30μ S/cmの場合

$$-13\% \le R2 \le 13\%$$

EC:
$$>30 \mu$$
 S/cmの場合

 $-9\% \leq R2 \leq 9\%$

この範囲外にある測定値については,再分析や標準 試料での確認,検量線の検討など適切な対応が必要と している.

一方,温泉水については,鉱泉分析法指針説明会テ キスト⁸⁰では,陽イオンと陰イオンの当量値の合計を 比較し,その差が5%を超える際には分析結果を再検 討すること.ただし,強アルカリ性や強酸性の温泉や 成分総計が低い温泉(陽イオン,陰イオンの合計がそ れぞれ1[mval/kg]程度以下)では,陽イオンと陰イ オンの当量値の合計の差が10%を超えることもある としている.

今回検討した温泉データでは、(Cation+Anion)が 100 μ eq/L以上、ECが30 μ S/cm以上であったので、 -8% \leq R₁ \leq 8% および-9% \leq R₂ \leq 9% として検定を 試みた.

結果および考察

1. 温泉水

酸性雨では精度管理を行う場合, ECの計算値とし て各イオン濃度とその当量伝導率の積の和が用いら れ,マニュアル化⁷⁰もされている.しかしこの式が適 用できるのは濃度が十分に低い場合に限られる.一方, 温泉水は濃度が高いためこの式は成立しない.

強電解質のモル伝導率λは濃度Cが低い範囲におい ては、次のKohlrauschの平方根則が成立する.

$$\lambda = \lambda_0 - \mathbf{k} \cdot \sqrt{C}$$

λ:モル伝導率

k:定数

C:濃度

この式を理論的に証明したのがDebye, Hückelおよ びOnsagerで,一般にDebye-Hückelの式と呼ばれてい るが, 0.005M程度までしか適用できない.

図1.2 Extended Debye-Hückelの式による計算値と 測定値の比較(温泉水)

 $-\log f_i = A \cdot z_i^2 \cdot \sqrt{I} \cdot \cdot \cdot Debye$ -Hückelの式

上式を改良したExtended Debye-Hückelの式では 0.1M程度まで適用できるといわれている.

更に高濃度の場合には、補正項を加えたDaviesの式 がよく用いられ、0.5M程度まで適用できるといわれ ている.

そこでこれら3式でECの計算結果と測定値を比較した結果を図1.1~図1.3に示した.また R_1 および R_2 の頻度分布図を図2および図3.1~図3.3に示した.また表2には R_1 および R_2 の統計基本量を示した.

図1.3 Daviesの式による計算値と測定値の比較 (温泉水)

図2 R₁の頻度分布図

図3.2 R₂の頻度分布図 (Extended Debye-Hückelの式)

図3.3 R₂の頻度分布図 (Daviesの式)

表2 R₁およびR₂の統計基本量

			R_2					
	R ₁	$\Sigma \lambda_{0i} \times C_i$	Extended Dedye- Hückel	Davies				
平均值	0.003	0.108	-0.075	-0.039				
中央値	0.000	0.096	-0.059	-0.037				
最大値	0.112	0.306	0.169	0.180				
最小值	-0.066	-0.023	-0.280	-0.188				
標準偏差	0.026	0.065	0.078	0.055				
データ数	152	152	152	152				
0.09 以上の データ数	1	83	3	4				
-0.09以下の データ数	0	0	54	26				
歪度	0.94	0.82	-0.26	0.27				
尖度	2.54	0.47	0.26	2.10				
但し、R, については「0.08 以上」および「-0.08 以下								

図2で表した陽イオンと陰イオンのイオンバランス を示すR₁の頻度分布ではやや陽イオンの方に偏る傾 向があるものの,152データのうち151データはR₁は 8%以下であった.超過したデータについては陽イオ ンの方が陰イオンより高く測定していた.

次に R_2 の検討をした.図1.1および図3.1からEC_{cal} = $\Sigma \lambda_{0i} \cdot C_i$ では計算値の方が測定値に比べて大きくな ることがわかった.この傾向は以前から指摘⁹⁰されて いた.濃度が高くなるに従ってその傾向は一層強く なった.この原因はKohlrauschの平方根則が考慮さ れなかったためと考えられる. R_2 の値は152データ中 83データが9%を超えた.

図1.2および図3.2では逆にExtended Debye-Hückel の式では計算値の方が測定値に比べて小さくなること を示した.濃度が高くなるに従ってその傾向は更に 強くなった.一般に活動度係数f_iは濃度が高くなるに 従って小さくなっていくが,NaClのように0.5Mない し1.0M付近から再び大きくなる化合物¹⁰⁾もある.こ れはイオン濃度が高まるとともにイオン間の距離が 短くなり,近距離間のイオン相関が強まるためと思 われる.Extended Debye-Hückelの式では,R₂の値は 152データ中3データが9%を超え,54データが-9%未 満であった.従って温泉水のような高濃度の場合には Extended Debye-Hückelの式でも十分な結果が得られ ないことがわかった.

次に上記の近距離間のイオン相関を補正したDavies の式⁶について検討した.図1.3および図3.3からわ かるようにDaviesの式はこれらの3式の中では最も ECcal=ECに近い結果が得られた.また相関も一番高 かった. しかし7~20mS/cm付近では計算値の方が やや低い値を示し、ECが20mS/cm以上になると、再 び両者はほぼ一致するようになった.R2の値は152デー タ中4データが9%を超え、26データが-9%未満であっ た. これはR2の平均値が-3.9%で、ややマイナスの 値を示したためである. σを標準偏差として、2σま でを許容範囲とすると、R₂の標準偏差は5.5%なので 許容範囲は-14.9~7.1%になり-14.9%未満が4データ, 7.1%を超えるデータが6データあった. 正規分布する 集合については2σを超えるデータはプラス側とマイ ナス側を合わせて4.56%なので、152データでは約7 データが2σを超えることになる.今回の分布は歪度 0.27、尖度2.10で正規分布からややずれていたので、 それよりやや多い10データが2σを超えた.

また上述したように、全体的に計算値の方がやや 小さいマイナスの値(R₂の平均値は-3.9%)を示すが、 それはECが7~20mS/cm付近で両者の値がやや乖離 することに由来がある.この原因には次のことがあ げられる.基本定数の一つである当量イオン電導度 の値が不明だったため、今回の計算対象からメタケ イ酸(H₂SiO₃),メタホウ酸(HBO₂)および硫化水素(H₂S) を除外した.しかしこれら成分を含有する温泉も多 く、pHが高く、高濃度で含む温泉水については考慮 を要すると思われた.また分析項目のうちCO₃²⁻およ びHCO3⁻では分析法は滴定法¹¹⁾が主で,他の項目が機 器分析であるのに比べて、精度や客観性にやや劣る. 更にCO₃²⁻およびHCO₃⁻は弱電解質で、しかもHCO₃⁻ は主成分である場合が多い.弱電解質は強電解質に比 べて低濃度ほど電離が進むため、前述のKohlrausch の平方根則は成立しない. Extended Debye-Hückelの 式やDaviesの式はあくまでも強電解質で成立する法 則である.

しかしながら弱電解質と強電解質が高濃度(陽イオ ン量+陰イオン量:2.02meq/kg~1.15eq/kg)で混在 するような温泉水の場合でもECの計算値はDaviesの 式でほぼ説明できた.このため温泉水分析の精度管理 のために,Daviesの式で計算したEC_{cal}が適用できる ことがわかった.しかしECの測定値とEC_{cal}の値が7 ~20mS/cm付近でやや乖離する問題については今後 更に検討する必要がある.

2. 酸性雨

次に酸性雨についても同様に計算し、その結果を 図4.1~図4.3に示した.上記の3式を用いた計算では、 $EC_{cal} = \sum \lambda_{0i} \cdot C_i$ がほぼ $EC_{cal} = EC$ に近い結果で、満足 な値が得られた.一方Extended Debye-Hückelの式お よびDaviesの式ではやや後者の方が良好だったもの の、両者はほぼ類似した結果で計算値の方が測定値 に比べて低くなった.これらの結果からマニュアル⁷⁷ のとおり、酸性雨のような低濃度の試料については $EC_{cal} = \sum \lambda_{0i} \cdot C_i$ の計算でECが十分説明できることがわ かった.

図4.1 $EC_{cal} = \Sigma \lambda_{0i} \cdot C_i$ による計算値と測定値の比較 (酸性雨)

図4.2 Extended Debye-Hückelの式による計算値と測 定値の比較(酸性雨)

図4.3 Daviesの式による計算値と測定値の比較 (酸性雨)

参考文献

 半田智郎,高橋徹哉,藤本和徳:北海道立地質研究 所報告書,78,169-174 (2007)

2) 粟屋徹,石坂信之,平野富雄:神奈川県温泉地学研究所報告,28,9-32 (1997)

3) 坂寺一洋,原田昌武,小田原啓,代田寧:神奈川県 温泉地学研究所報告,40,59-64 (2008)

4)大野茂,佐藤繁,水谷直樹,白井文雄:新潟県衛生 公害研究所年報,10,105-110(1994)

5) 酒井寿夫, 仙石鐵也, 原光好, 森澤猛, 垰田宏, 岩 本宏二郎, 荒井國幸, 小澤孝弘: 森林総合研究所研究 報告, Vol.3-No.4 (No.393), 365-407 (2004)

6) Craig Bethke : "Geochemical Reaction Modeling", p107-114, 1996, Oxford University Press

7) 東アジア酸性雨データ報告書「2005年湿性沈着モニ タリング」,2006年11月,東アジア酸性沈着物モニタ リングネットワーク

8) 鉱泉分析法指針説明会テキスト,2009年7月,環境 省自然環境局

9) 石塚伸一,木村淳子,野村真美,高橋政教,小林栄 ー:青森県環境保健センター研究報告,**2**,21-27 (1991) 10) 理科年表,p574,平成13年版2001,国立天文台編, 丸善株式会社

11) 鉱泉分析法指針(改訂),平成14年3月,環境省自 然環境局

腸管出血性大腸菌O157に関する3種の遺伝子型別法の比較

榮井 毅・田邉純子・橋田みさを・大前壽子

Comparison of Three Genotyping Methods for Enterohemorrhagic Escherichia coli O157

Takeshi SAKAI · Sumiko TANABE · Misao HASHIDA and Hisako OHMAE

平成21年度に奈良県で確認された集団性が疑われる5事例28株と散発事例18株の腸管出血性大腸菌O157を対象に、PFGE法、MLVA法とIS-printing法の3種の遺伝子型別法について解析比較を実施した.その結果、集団事例では、IS-printing法で1株、PFGE法で2株、MLVA法で6株が型別違いとなり、うち1株は3手法に共通していた.散発事例においてIS-printing法の型別が一致した2株は、PFGE法、MLVA法ともに異なる型別となった.以上の結果から、原理の異なる手法を組合わせることで、より菌株間の関連性が明確になることが判明した.

緒 言

腸管出血性大腸菌(Enterohemorrhagic Escherichia coli:EHEC)O157は,溶血性尿毒症症候群(HUS)や脳症をはじめ重篤な症状を誘発するとともに、ヒトからヒトへ感染しやすいという特徴を有する病原細菌であり、毎年多くの集団・散発感染が全国各地で発生している.EHECO157感染症は感染症法の3類に指定され、社会的影響が非常に大きいため、しばしば迅速な対応が求められる.

EHEC O157の潜伏期間は,摂食から発症まで通常 3~5日間であり,少ない菌量で感染が成立するため,

原因食品を特定できないことが多く,感染経路等の究明のために,患者等から検出した菌株の遺伝子解析が不可欠となっている.国際標準法としてパルスフィールドゲル電気泳動 (PFGE) 法が用いられている¹¹が,労力と時間に多くを要するなど難点が指摘されている.

本報では,新たな迅速遺伝子型別法として注目さ れる,縦列反復配列多型(Variable-Number Tandem Repeats: VNTR)を利用したMLVA(Multiple-Locus VNTR analysis)法とIS-printing法²⁾に関する,解析能 の比較検討を行ったので概要を報告する.

VNTR				最終濃度
領域	Dye	Forward primer (5'-3')	Reverse primer (5'-3')	(μM)
マルチ	プレックス	<反応1		
K3	6-FAM	GGCGGTAAGGACAACGGGGTGTTTGAATTG	GAACAACCTAAAACCCGCCTCGCCATCG	0.2
K9	PET	GCGCTGGTTTAGCCATCGCCTTCTTCC	GTGTCAGGTGAGCTACAGCCCGCTTACGCTC	0.2
K25	VIC	GCCGGAGGAGGGTGATGAGCGGTTATATTTAGTG	GCGCTGAAAAGACATTCTCTGTTTGGTTTACACGAC	0.1
K34	PET	GACAAGGTTCTGGCGTGTTACCAACGG	GTTACAACTCACCTGCGAATTTTTTAAGTCCC	0.2
マルチ	プレックス	<反応2		
K17	NED	GCAGTTGCTCGGTTTTAACATTGCAGTGATGA	GGAAATGGTTTACATGAGTTTGACGATGGCGATC	0.06
K19	NED	GCAGTGATCATTATTAGCACCGCTTTCTGGATGTTC	GGGGCAGGGAATAAGGCCACCTGTTAAGC	0.04
K36	6-FAM	GGCGTCCTTCATCGGCCTGTCCGTTAAAC	GCCGCTGAAAGCCCACACCATGC	0.03
K37	6-FAM	GCCGCCCCTTACATTACGCGGACATTC	GCAGGAGAACAACAAAACAGACAGTAATCAGAGCAGC	0.04
反応3				
K10	VIC	CAGCCTCCTGCAAACTTTACTGTTCATTTCTACAGTCTC	GGATCTGTCTGTATCATCATTGAATGAACAACCCATTTC	0.3

表1 MLVA プライマー

1. 対象菌株

平成21年度,当センターへ搬入された46株のEHEC O157菌株を解析対象とした.内28株は集団性が疑われる5事例由来株,残り18株は散発事例由来株である.

2. PFGE解析

PFGE法は、国立感染症研究所細菌第一部による型 別結果を参照し、型別タイプ番号を表記した.

3. MLVA解析

1) 菌体からのDNA抽出

表 2	平成 21 年度	腸管出血性大腸菌 O157	7 菌株の遺伝子解析データ
-----	----------	---------------	---------------

古灶釆旦											PFGE法	JE法 IS-printing 法			
困怀宙万		K25	K3	K34	K9	K17	K19	K36	K37	K10	(感染研)	1st Set	2nd Set		
H21-V01		5	12	9	17	8	6	9	7	21	e64	111100111101111101	011100100011101111		
H21-V02		8	12	11	14	7	6	3	6	26	e65	111100111101111111	011100100011101111		
H21-V03		4	20	9	16	9	6	10	6	20	e30	100100110100101111	011000000011101101		
H21-V04		4	11	9	13	11	6	10	6	22	e66	110100111101101101	011100100011101111		
H21-V05		3	4	7	0	5	8	6	5	0	e184	000100010000101111	010100001001001101		
H21-V06		5	6	7	10	3	5	7	10	32	e152	100100101000101111	110000110001001101		
H21-V07	事	5	6	7	10	3	5	7	10	30	e152	100100101000101111	110000110001001101		
H21-V08	例 1	5	6	7	10	3	5	7	10	30	e152	100100101000101111	110000110001001101		
H21-V09	$\overset{1}{\smile}$	5	6	7	10	3	5	7	10	30	e152	100100101000101111	110000110001001101		
H21-V10		3	6	6	11	3		11	8		e206	100100001000101111	110000110001001101		
H21-V11		2	18	8	12	3	7	4	8	37	e204	000100101001101111	110100100011101011		
H21-V12	爭例	2	18	8	12	3	7	4	8	36	e204	000100101001101111	110100100011101011		
H21-V13	2	2	18	8	12	3	7	4	8	39	e204	000100101001101111	110100100011101011		
H21-V14		4	0	7	10				8	58	e99	100001101000001111	110000110001001101		
H21-V16		2	12		17		6	10	7	59	e241	110100111100111101	011100100111101111		
H21-V17		5	10	9	12	7	4	6	.9	28	e238	110000111101111111	011100100011101111		
H21-V18		2	12	9	17	9	6	10	7	61	e241	110100111100111101	011100100111101111		
H21-V19		2	12	9	17	9	6	10	7	59	e241	110100111100111101	011100100111101111		
H21-V20	事	2	12	9	17	9	6	10	7	59	e239	110100111100111101	011100100111101111		
H21-V21	例	2	12	9	17	9	6	10	7	59	e241	110100111100111101	011100100111101111		
H21-V22	3	2	12	9	8	9	6	10	• 7	59	e241	110100111100111101	011100100111101111		
H21-V25		2	12	9	17	9	6	10	7	59	e241	110100111100111101	011100100111101111		
H21-V26		2	12	9	17	9	6	10	• 7	59	e241	110100111100111101	011100100111101111		
H21-V27		2	12	9	17	9	6	10	• 7	59	e241	110100111100111101	011100100111101111		
H21-V23		3	14		<u></u> 15		7	4		36		010100101001101111	110100100011101011		
H21-V24		5	13	9	14	7	1	13	6	20	e3/1	011100110101111111	0111100000011001011		
H21-V15	- <u>-</u> -		15		<u>15</u>	<u>'</u>				36		010100101001101111	110000100011101011		
H21-V28	事例	2	15	8	15	11	7	4	7	36	d594	010100101001101111	110000100011101011		
H21-V20	4	2	15	8	15	11	7	1	7	36	d59/	010100101001101111	110000100011101011		
H21-V20			15		13	<u>11</u>	'			10		011100101001101101	110100100011101011		
H21-V31		5	10 Q	10	10	7	6	4	6	41	e579	110100111101111101	01110010011101011		
H21_V22				10					6	 	0570	110100111101111101	011100100111101111		
H21-V32		5	9	10	9	7	6	6	6	41	0570	110100111101111101	011100100111101111		
I U21 V25	_	5	9	10	9	7	6	6	6	41	0570	110100111101111101	011100100111101111		
1121-V35	事	5	0	10	9	7	6	6	6	41	0570	110100111101111101	011100100111101111		
I H21-V30	例	5	9	10	9	7	6	6	6	41	e579	110100111101111101	011100100111101111		
	5	5	9	10	9	7	6	6	6	41	e579	110100111101111101	011100100111101111		
H21-V38	0	э г	9	10	9	7	6	6	6	41	e579	110100111101111101	011100100111101111		
H21-V39		5	9	10	9	(6	6	6	41	e579	110100111101111101	011100100111101111		
H21-V40		5	<u> </u>	0				<u> </u>	0	41	e579	110100111101111101	011100100111101111		
H21-V34		Э г	6	8	12	3 C	4	9	21	34 00	e574	100100101000101101	11000011001001101		
HZ1-V41		5	9	10	11	6	6	6	4	28	c293	110100111101111111	010100100111101111		
HZ1-V42		5	15	11	10	7	6	11	11	23	e759	111100111101111111	011100100011101111		
H21-V43		4	4	7	0	5	8	6	5	0	e765	000100000000101111	010100001001001101		
H21-V44		5	9	10	9	7	6	6	6	41	e492	110100111101111101	011100100111101111		
H21-V45		5	15	8	8	4	6	5	4	25	c512	100100100000101111	11010000000101011		
H21-V46		2	14	8	16	12	7	4	8	44	e755	011100101001101111	110100100011101011		

(注) IS-printing 法の結果は増幅バンドの有無を「1」、「0」で表記した. セット1は1-01から1-15, eae, 1-16, hlyAの順であり、セット2は2-01から2-16, stx2, stx1の順である。

表3 各VNTR領域の配列及びOff set 値

UNTDATE		マルチプレッ	·クス反応 1		マルチプレックス反応 2				反応 3
VINIK限域	K 25	K 3	K 34	K 9	K 17	K 19	K 36	K 37	K 10
繰返し単位	6 bp	6 bp	18 bp	6 bp	6 bp	6 bp	7 bp	6 bp	6 bp
VNTR配列	TGCAAA	AAGGTG	*	AAATAG (AAATAT)	ТСТТТА	CCACGA	TCACACC (TCACAAC)	TGCTAC	GGCTCT
オフセット値	110 bp	323 bp	99 bp	466 bp	121 bp	273 bp	102 bp	142 bp	178 bp

*K34のVNTR配列は、AAATAATCTACAGAAGTT、AAATAATTCGCAGGAGTT、AAATAATCATCAGAAGTT、AAATAATATACAGAAGTT、AAATAATATACAGGAGTTのいずれか.

MLVA 法には, 菌体を滅菌蒸留水に懸濁し, 沸騰 水浴中10分間加熱後, 10,000rpm, 10分間遠心した 上清を使用した. 塩基配列解析には, DNeasy Blood & Tissue Kit (キアゲン)を使用した. ただし, 菌 体の前処理は直接180 µ LのBuffer ATLに懸濁し, Proteinase Kの作用時間は2時間以上とした.

2) PCR

国立感染症研究所(感染研)のプロトコール³に準拠し、プロトコール中の蛍光色素の組合せなどを若干 改変⁴⁾して、二種類のマルチプレックスPCR反応と一 種類のPCR反応を実施した.ノンラベル側プライマー はテイルドプライマーとし、表1のプライマーを、マ ルチプレックス反応1はHPLC精製グレード、その他 は脱塩精製グレードのプライマーとして、ライフテク ノロジーズ社に合成委託した.

3) DNAサイズの測定及びリピート数の解析

PCR産物は,各反応液と滅菌蒸留水を混合して100 倍希釈した.この希釈液1 μ LとGeneScan 600 LIZ Size Standard (ライフテクノロジーズ) 0.4 μ L にHi-Di Formamide (ライフテクノロジーズ) 12 μ Lを加え, 95°C,2~5分間加熱後,急冷を行い泳動用サンプルとした. ABI PRISM 310 Genetic Analyzer (ライフテクノロジーズ) を用い,15.0kVで5秒間インジェクションを行い,60°C, 15.0kVで28~32分間泳動し,GeneMapper Software v. 4.0 (ライフテクノロジーズ) を用いてDNAサイズの測定 とリピート数の対応を解析した.

4) シーケンス解析

塩 基 配 列 解 析 は, DigDye Terminator Cycle Sequencing Ready Reaction kit (v 1.1, v 3.1) に よ る反応液をBigDye XTerminator精製キット(ライフ テクノロジーズ)を用いて精製し, ABI PRISM 310 Genetic Analyzerにより解析した.

4. IS-printing解析

IS-printing法は東洋紡(株)製の試薬キットを使用 し、取扱説明書に従って実施した.本法は、挿入配列 (*IS629*)の32箇所における分布パターン及び4種類の 病原遺伝子を標的とした,2組のマルチプレックス PCRであるため,合計36箇所のDNA増幅の有無をそ れぞれ"1","0"として表記した.

結 果

3手法によるEHEC O157の型別結果を表2に示す. 尚,菌株番号は当センターに搬入された順とし,疫学 的に何らかの共通原因が疑われる集団・家族などの5 事例を破線で囲んで明示したため,表中の菌株の順序 を一部入れ替えた.

PFGE法では、1事例(事例3)の2株の型別違いを 除き、集団事例ごとに同一型別であった.散発事例に は型別一致は検出されなかったが、1株(H21-V31)が 集団事例5の株と同じ型別であった.

MLVA法では、3つの集団事例の合計6株が型別違いとなった. 散発事例では2株(H21-V31, H21-V44)の型別が一致し、集団事例5の株と同じ型別であった.

IS-printing法では、1 事例(事例3)の1株の型別 違いを除き、集団事例ごとに同一型別となった. 散発 事例では2株(H21-V02とH21-V42)の型別が一致し たほか、別の2株(H21-V31,H21-V44)の型別が一 致して集団事例5と同じ型別であった.

集団事例の型別違いの株のうち,1事例の1株 (H21-V17)は,3手法に共通していた.

散発事例の株うち, IS-printing型別が一致した H21-V02株とH21-V42株は, PFGE法では一致せず, MLVA法で9領域中6領域でリピート数が不一致で あった.

測定したDNAサイズと実際のリピート数との対応 は、塩基配列解析により検証された.その際確認した VNTR配列及びオフセット値(増幅したDNAフラグメ ントのうちVNTRを除いた領域の塩基対数)を表3に 示す.領域K9は"AAATAG"の繰返しであるが、最 後の1リピートのみ"AAATA<u>T</u>"であった.また、領 域K36の繰返し単位は"TCACACC"であるが、最後 の1リピートのみ"TCACAAC"であった.

	PFGE 法	MLVA 法	IS-printing 法					
結果判明の時期	コロニー分離から3~4日	コロニー分離当日~翌日	コロニー分離当日					
解析手法	泳動パターンによる比較	9組のリピート数 (整数) による比較	36 標的 PCR の有無による 比較					
実施時の安全性	大量培養し, 生菌のままブ ロック化	菌体を少量採取後,すぐに 溶菌	菌体を少量採取後,すぐに 溶菌					
集団事例中の変異型	1から2バンド違いの泳動 パターンとなる	変異型の検出が多い (特に VNTR-10, 次いで VNTR-9)	完全に一致することが多い					

表4 遺伝子型別法の特徴比較

考 察

本研究では、3種の遺伝子型別法を実施したが、型 別の原理が異なるため、菌株比較における型別の一致・ 不一致について、手法による違いが表れることが予想 されていた.実際に、集団事例中の型別違いの株は、 IS-printing法で1株、PFGE法で2株、MLVA法で6 株という、手法による違いが際立った結果となった.

その中でも,事例3の1株(H21-V17)は3手法に 共通していたため,他の株との違いがより明確となっ た.この事例の詳細は,他誌に報告した⁵⁾.

散発事例の中でIS-printing型別が一致したH21-V02 株とH21-V42株は、PFGE法、MLVA法ともに型別が 不一致であったことと、患者情報については関連性が 認められなかったことから、偶然の一致である可能性 が高いことが考えられた. IS-printing法の解析能の限 界は以前から報告されている²⁾が、今回の結果からも、 IS-printing法単独で遺伝子型別を決定することは難し いと示唆された. それ以外の散発事例株では、菌株の 関連性について、表2に示した以上の情報は得られな かった.

図4は、本研究で用いた3種の解析法の特徴比較で ある. PFGE法ではコロニー分離から3~4日間かか るのに対し、他の2手法では基本的にコロニー分離当 日に結果が判明する利点がある. さらに、両手法は数 値化が可能であり、散発事例や複数都道府県にまたが る事例に対応する際に、多施設間の比較が容易である 点が非常に有利である. 安全面についても、二つの手 法の方が実施者に危険性が少ないなどの利点がある.

本研究の結果から、標準法であるPFGE法と、原理 の異なる遺伝子解析手法を併用することは、菌株間の 関連性をこれまで以上に明確に把握することができ、 非常に有用であることが示唆された.PFGE法にない 多くのメリットを持つこの2手法が、今後の実績の蓄 積によって確立されることが強く期待される.

謝 辞

本研究全般にわたり,パルスネット研究班のサポー トをいただきました.PFGE解析結果をご提供いただ いた感染研の寺嶋淳先生他,ご協力いただいた方々に 深謝いたします.また,菌株提供にご協力いただいた 奈良市保健所,県内保健所,医療機関及び関係機関の 方々に感謝いたします.

文 献

- B. Swaminathan, T. J. Barrett, S. B. Hunter, et al. : *Emerg. Infect.* Dis., 7, 382-389(2001)
- T. Ooka, J. Terajima, M. Kusumoto, et al, : J. Clin. Microbiol., 47, 2888-2894(2009)
- Y. Pei, J. Terajima, Y. Saito, et al. : Jpn. J. Infect. Dis., 61, 58-64(2008)
- T. Sakai, H. Ohmae and Y. Kitahori : Jpn. J. Infect. Dis., 63, 217-219(2010)
- 5) T. Sakai, S. Tanabe, M. Hashida, et al. : *Jpn. J. Infect. Dis.*, **63**, 152-153(2010)