果樹を加害するカメムシ類の生態に関する調査（第2報）

チャベナオカメムシとクサギカメムシのスギ及びヒノキでの発生生態

小田 道宏・杉浦 哲也・中西 喜徳・柴田 友司・上住 泰

Ecological Studies of Stink Bugs Attacking the Fruit Trees.

Michihiro ODA, Tetsuya SUGIURA, Yoshinori NAKANISHI, Ei’ichi SHIBATA and Yasushi UESUMI

諸 言

果樹類の果実を吸収加害する主要なカメムシ類には、チャベナオカメムシ *Plautia stali* SCOTT とクサギカメムシ *Halyomorpha mista* UHLER があり、いずれも寄主植物としてスギ、ヒノキがあることを前報に報告した。両種のカメムシは果樹類での産卵をみることはあっても、その幼虫の成育はほとんどみられず、果樹類で繁殖する害虫ではないようである。

そこで、チャベナオカメムシとクサギカメムシ両種の主な発生源とみられるスギ・ヒノキでの発生生態の解明を行うことが重要であり、更に発生予報から必要と考える。チャベナオカメムシのスギ・ヒノキにおける発生消長については池田ら2)，田中10)，山田ら15）の報告がある。しかし、クサギカメムシのスギ・ヒノキにおける発生消長についての報告はみられないようである。

本報は、奈良県におけるスギ・ヒノキでのチャベナオカメムシとクサギカメムシについてその発生生態を明らかにし、果樹類の被害との関連について解明するために1976年より1979年の4年間調査を行ってきた結果を報告する。

調査方法

スギ・ヒノキに生息するカメムシ類の調査は平坦に近いスギ林のモデルとして林業試験場（高崎郡高取町習倉、以下高取とする、標高80 m）と山間でのスギ・ヒノキ林のモデルとして林業試験場生林木育種園（宇治郡室生村向鹿、以下室生とする、標高470 m）の2か所で実施した。この2か所のスギ・ヒノキ林はいずれも樹高約4 m程度で主幹部は採種のために切り戻した特殊な樹形とされている。

スギ・ヒノキでのカメムシ類の生息種を調査するために1978年9月に高取のスギ3柄について、1979年9月に室生のスギ・ヒノキ各10柄について調査した。山間でのスギ・ヒノキにおける主要カメムシ類の生息密度調査は、室生で1976年から1979年の4年度間実施し、その調査樹の地点は第1図に示した。1976年10月1日に園内でも比較的カメムシ類の生息が多くみられたスギのF地点の20柄について行い、調査法は見取り法及び叩き落し法で実施した。見取り法は球果の着生している枝端ごとに調査し、1柄当たりのカメムシ類の個体数をすべて見取りこととし、更にその後残存個体について叩き落しによって計数補正を行った。その結果、見取り法の精度はかなり高いことが判明したので1977年以降は見取り法で調査することとした。1977年は前年と同様F地点のスギで8月23日に15柄を、10月5日に26柄を選び調査した。1978年には発生消長調査とともにチャベナオカメムシの林内各地点における生息の推移調査を併せて行った。すなわち、スギのa及F地点、ヒノキではa、b、cの各地点をそれぞれ10樹づつについて、5月22日から8月26までの間は毎週ごとに7回と、8月26日以降10月13日まではほぼ2週ごとに4回の合計11回にわたり調査した。1979年の発生消長調査ではヒノキはa地点で7月9日から10月22までの間は每月ごとに11回、スギではb地点で7月27日から調査を開始し10月22まで9回、それぞれ10柄について調査した。

平坦でのスギにおけるチャベナオカメムシの発生消長調査は、高取で1977年と1978年の2年度間実施した。
1977年にはそれぞれスギ5株について8月26日に叩き落し法で、それ以後の9月21日、30日、10月5日には観 vai詳しく調査した。1978年にはスギ13株について5月13日から8月10日まで約10日ごとに1回、それ以降は1週間ごとに12月20日まで19回、それぞれ観取り法により調査した。

チャバネアオカムシとクサギカムシのスギでの成育可能な時期を調べるために6月3日、21日、7月11日にスギ果実枝をコース布袋で覆い、ふ化直前の各28卵（2卵塊）を放養し、その後の成育状況を調べた。

カムシ類の卵としてもスギ種子の役割を調べるために、1978年8月10日にスギ果実枝をコース布袋で覆い、チャバネアオカムシのふ化幼虫28頭を放飼し、成虫になるまで飼育し、11月6日にその果実の種子を採取し、軟調X線（ソフトテックス®）で対照とした袋かけをしていない果実の種子とともに撮影し比較調査した。

スギの果実果とカムシ類の生態密度の関係について調査を実施した。1976年10月1日生産では20樹について、果実数をやや多く、中、やや少〜少の3段階に分類し、チャバネアオカムシとクサギカムシの成、幼虫の生息数を調べた。1977年8月26日生産では5樹について、果実数とチャバネアオカムシ成、幼虫の生息数を調べた。

スギ・ヒノキにおけるチャバネアオカムシの卵寄生蜂の調査を1978年と1979年に実施した。生産では1978年と1979年にスギ・ヒノキで、高取では1978年にスギで調査した。カムシ類の生態密度調査とともにチャバネアオカムシの未化卵塊を卵の付着した枝枠にテーブル標識をしてそのまま樹上に放置し、寄主のふ化調査とあわせて寄生蜂の羽化状況を調査した。

調査結果

スギ・ヒノキで発生を認めたカムシ類の種類は第1表に示したように、山間のスギではチャバネアオカムシ、クサギカムシ、ツヤアオカムシGlaucias subpun-ctatus Walker、アカスギカムシPoecilocoris lewisi Distant、ヒメツカノカムシElasmucha putoni Scott、セカツノカムシAcanthosoma denticaudata JakovleY、ムラサキナガカムシ Pylorus colon Thunberg、オオメナカムシGeocoris varius Uhlerの3科8種、ヒノキではオオメナカムシを除く7種に加えヒマラヤヒメカムシHomoeocerus unipunctatus Thunberg、オオクモトベニカムシAnacanthocoris strioricum Scottの4科9種といえどもSimpsonの単位密度指数9は低く、多様な群集構造を示した。平野のスギではチャバネアオカムシ、クサギカムシ、ツヤアオカムシの1科3種で単純な群集構造であった。また、成育密度としては山間のスギでチャバネアオカムシ、クサギカムシ、ヒメツカノカムシ、ムラサキナガカムシを、ヒノキではチャバネアオカムシ、ツヤアオカムシ、ヒメツカノカムシ、ムラサキナガカムシを、チャバネアオカムシのふ化幼虫28頭を放飼し、成虫になるまで飼育し、11月6日にその果実の種子を採取し、軟調X線（ソフトテックス®）で対照とした袋かけをしていない果実の種子とともに撮影し比較調査した。

スギ・ヒノキにおけるチャバネアオカムシの卵寄生蜂の調査を1978年と1979年に実施した。生産では1978年と1979年にスギ・ヒノキで、高取では1978年にスギで調査した。カムシ類の生息密度調査とともにチャバネアオカムシの未化卵塊を卵の付着した枝枠にテーブル標識をしてそのまま樹上に放置し、寄主のふ化調査とあわせて寄生蜂の羽化状況を調査した。
第1表 スギ・ヒノキに生息するカメムシ類の場所及び種類による種類構成

<table>
<thead>
<tr>
<th>生息種（成虫）</th>
<th>スギ（1979. 9月, 室生）</th>
<th>ヒノキ（1979.8月, 高取）</th>
</tr>
</thead>
<tbody>
<tr>
<td>カメムシ科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>チャバネアオカメムシ</td>
<td>27.7</td>
<td>65.3</td>
</tr>
<tr>
<td>クサギカメムシ</td>
<td>15.3</td>
<td>4.0</td>
</tr>
<tr>
<td>ツヤアオカメムシ</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>アカスジンカメムシ*</td>
<td>19.7 (0)</td>
<td>115.7 (0.7)</td>
</tr>
<tr>
<td>ツナカメムシ科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒメツナカメムシ</td>
<td>3.7</td>
<td>313.0</td>
</tr>
<tr>
<td>セアカツナカメムシ</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>ヒエリカメムシ科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホシハラヒロヘリカメムシ</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>オオクモヘリカメムシ</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>イトカメムシ科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオメナガカメムシ</td>
<td>3.0</td>
<td>0</td>
</tr>
<tr>
<td>ムラサキナガカメムシ</td>
<td>20.3</td>
<td>30.0</td>
</tr>
</tbody>
</table>

生息種類数: 8
SIMPSONの単純度指数 (λ) : 0.2103, 0.4129, 0.9654

注: 各カメムシの生息数は10樹当たりの虫数で示した。実生ではスギ・ヒノキとも10樹3回の同化法、高取のスギは13樹4回の同化法により調査。
*アカスジンカメムシは5齢幼虫、() は成虫を示す。

第2表 スギ・ヒノキでの主要なカメムシ類の8月と10月の生息状況（室生）

<table>
<thead>
<tr>
<th>調査年月日</th>
<th>植種（10a当たり）</th>
<th>チャバネアオカメムシ</th>
<th>クサギカメムシ</th>
<th>アカスジンカメムシ</th>
<th>セアカツナカメムシ</th>
<th>ヒメツナカメムシ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(球果数）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976 X 1</td>
<td>スギ（30.5）</td>
<td>0.9</td>
<td>2.5</td>
<td>1.0</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1977 VIII 23 X 1</td>
<td>ヒノキ（1.3）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1977 VIII 5 X 5</td>
<td>スギ（19.7）</td>
<td>3.3</td>
<td>7.5</td>
<td>0.5</td>
<td>5.3</td>
<td>0.1</td>
</tr>
<tr>
<td>1977 VIII 5 X 5</td>
<td>ヒノキ（1.0）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1978 VIII 25 X 3</td>
<td>スギ（28.8）</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1978 VIII 25 X 3</td>
<td>ヒノキ（3.8）</td>
<td>0.3</td>
<td>3.8</td>
<td>0.1</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1979 VIII 28 X 8</td>
<td>スギ（72.2）</td>
<td>2.9</td>
<td>6.7</td>
<td>1.1</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>1979 VIII 28 X 8</td>
<td>ヒノキ（51.1）</td>
<td>7.2</td>
<td>5.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

注: 成・幼虫は1樹当たり虫数で示した。
また、ヒノキにおけるチャバネアオカメムシ5年齢幼虫での同じ林内の場所による生息密度の消長は第3図に示すように、a地点では初期の3月25日から9月7日には多くの生息を認めたが、その後の増加は少なかったのに比べ、b、c地点は9月下旬に急増し、10月上旬の調査では両方が多く日当たりの高い地点の生息が最も多くなった。また、スギでのチャバネアオカメムシの場所による生息調査において、f地点では生息を認めたが、同一程度の球果量があったd地点では全く本種の生息を認めず、他種としてもクサギアオカメムシの成虫1頭を認めたにすぎなかった。

一方、高取におけるスギでのチャバネアオカメムシの発生消長調査は第4図に示した。1977年は調査開始が8月26日以降のためそれ以前の発生は不明であるが、9月下旬に成虫の生息密度が高まった。1978年は5月下旬から調査を開始したが、6月下旬に成虫及び2年齢幼虫数増を認めただけでその後7月まで密度の増加はみらなかった。しかし、8月中旬以降になると成・幼虫の生息密度は次第に増加し、8月、9月には成虫密度は最も高まった。チャバネアオカメムシの産卵期は8月中旬より次第に増加し9月中旬に最高となり、9月下旬まで認められ、スギ13個当たりの産卵数は70卵球となった。越冬前成虫は11月下旬以降よりスギ球果から次第に減少して11月中旬には数頭となったが、最も遅い成虫は12月13日の調査まで球果に生息しているのが認められた。

チャバネアオカメムシのスギ・ヒノキでの発生消長調査時における生息状況の観察では、8月から9月の高温期には葉裏や球果の日陰部に生息していたが、10月中旬以降の気温の低下にともない成・幼虫ともに極度に陽光に姿を現わし、特に成虫は樹冠部表面に多くみられていた。成虫の体色も緑色型から次第に緑褐色型に変化した。また、幼虫の体色では普通年4年齢幼虫が腹部背側が緑色であるが、これが10月以降の気温の低下と共に次第に黒色化することを認めた。

クサギアオカメムシでの1978年、1979年の発生消長調査は第5図に示した。1978年は他のカメムシ類同様スギよりヒノキで多くの生息を認め、発生のピークは9月下旬にみられ、チャバネアオカメムシに比べて約30程度早くみられた。また、1979年はヒノキでわずかしか生息を認めなかったが、スギでやや多く9月上旬、中央に成虫の生息密度のピークがみられ、前年よりやや早い発生盛期となり、チャバネアオカメムシとはほぼ同様の時期であった。

また、密度調査時における観察からクサギアオカメムシ成虫の越冬前にもみられる体色変化は背面では認められず、
第3表 スギ球果枝の越冬前放飼による成虫調査
（1978年）

<table>
<thead>
<tr>
<th>種名</th>
<th>放飼時期</th>
<th>接触数</th>
<th>成虫数</th>
<th>成虫状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>チャバネアオカメムシ</td>
<td>6月3日</td>
<td>28</td>
<td>2齢死亡</td>
<td></td>
</tr>
<tr>
<td></td>
<td>× 21日</td>
<td>×</td>
<td>×</td>
<td>成虫</td>
</tr>
<tr>
<td></td>
<td>7月11日</td>
<td>×</td>
<td>×</td>
<td>成虫</td>
</tr>
<tr>
<td>クサギカメムシ</td>
<td>6月3日</td>
<td>28</td>
<td>2齢死亡</td>
<td></td>
</tr>
<tr>
<td></td>
<td>× 21日</td>
<td>×</td>
<td>×</td>
<td>成虫</td>
</tr>
<tr>
<td></td>
<td>7月11日</td>
<td>×</td>
<td>×</td>
<td>成虫</td>
</tr>
</tbody>
</table>

注）球果枝をゴース布袋で覆っての中に放飼した。

腹部が暗褐色からやや赤褐色に変化するのが観察された。しかし、幼虫ではとくに体色変化は認められなかった。

チャバネアオカメムシとクサギカメムシの6月から7月中旬にかけてのスギ球果枝での成虫状況は第3表に示したように、6月上旬から下旬の放飼では両種とも2齢幼虫で死亡した。しかし、7月中旬にふ化した幼虫は両種とも成虫となった。

チャバネアオカメムシに給食したスギ球果の種子を直接X線で調査した結果は第4図に示すように、ほとんどの胚乳及び胚が消失しており、対照とした種子の多くには胚乳及び胚が認められた。

スギ球果の着果量とカメムシ類の生殖密度の関係は第4表に示すように、1穂当たりの成・幼虫密度でみると、生殖密度の偏差値は大きいがほぼ正の相関関係がうかが
われ、球果量が多い樹では生息密度は高い傾向がみられ
た。しかし、スギの球果数とチャパネアオカメムシの成
虫及び幼虫の個別構成を1樹ごとにみると、第5表に示
すように球果数と必ずしも正比例しなかった。また、室
生のスギ・ヒノキ林では球果の多い樹でも場所によって
カメムシ類の生息が非常に少ない場合がしばしばみられ、

第6図 チャパネアオカメムシに給食したスギ球果の種子の軟調X線（ソフトックス®）による調査
撮影データ：13kV、3mA、60秒、ソフトックスフィルム
第4表 スギの果球数とカマス類の生息数との関係
（1976年、室生）

<table>
<thead>
<tr>
<th>球果数</th>
<th>調査数</th>
<th>カマス類</th>
<th>カマシ</th>
<th>(\bar{X} \pm S)</th>
<th>(\bar{X} \pm S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5（やや多く）</td>
<td>9</td>
<td>5.2±6.2</td>
<td>1.3±0.9</td>
<td>2.3±0.7</td>
<td>0.9±1.4</td>
</tr>
<tr>
<td>7（中）</td>
<td>3</td>
<td>3.7±1.7</td>
<td>1.3±1.5</td>
<td>1.3±0.9</td>
<td>0.9±1.4</td>
</tr>
<tr>
<td>6（やや少く）</td>
<td>8</td>
<td>3.0±1.5</td>
<td>1.3±0.7</td>
<td>2.3±0.7</td>
<td>0.9±1.4</td>
</tr>
</tbody>
</table>
注：1月当たりの成・幼虫の平均数で示した。
カマス類は見取り方及び呼び出し法により10月1日調査

第5表 スギの球果数とチャバネオアカカミシの生息密度
（1977年、高取）

<table>
<thead>
<tr>
<th>調査地</th>
<th>球果数</th>
<th>幼虫</th>
<th>成虫</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>535</td>
<td>13</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>460</td>
<td>12</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>360</td>
<td>6</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>22</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
注：チャバネオアカカミシは呼び出し法により8月26日調査

第6表 チャバネオアカカメシの卵寄生剣

<table>
<thead>
<tr>
<th>調査地</th>
<th>年次</th>
<th>調査数</th>
<th>卵化数</th>
<th>卵寄生率</th>
<th>成虫寄生率</th>
<th>平均卵寄生数</th>
</tr>
</thead>
<tbody>
<tr>
<td>スギ</td>
<td>13柄（1978年、高取）</td>
<td>70</td>
<td>25.7%</td>
<td>20.2%</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10柄（1979年、室生）</td>
<td>12</td>
<td>16.7</td>
<td>8.8</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30柄（1978年、室生）</td>
<td>28</td>
<td>39.3</td>
<td>38.6</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>ヒノキ</td>
<td>19柄（1979年、室生）</td>
<td>27</td>
<td>51.9</td>
<td>40.8</td>
<td>43.4</td>
<td></td>
</tr>
</tbody>
</table>
注：調査期間は7月〜9月。
ら幼虫の繁殖があることが報告されている。しかし、筆者らの観察では6月から7月かけてはごく少数の成虫及び初齢幼虫の生殖も認められず、8月以降になってからチャバネオアカムシの繁殖が見られる。また、チャバネオアカムシのスギ果実枝放棄による結果では、6月上旬から下旬は成育せず飼育として不適で、7月以後に飼育として利用できることがわかった。山田らはスギキオ球果の日本個体の統計の結果、5月4月中旬までには幼虫の成育は認められず、飼育として不適であるとしている。

志賀はスギ・サワラ球果でのチャバネオアカムシの生殖は5月11月の間期は飼育成虫の生存期は短かく、産卵数は少ない飼育としては不適で、しかも、幼虫はすべての成育期で死亡したとしている。小林はスギに生息するチャバネオアカムシの飼育により、不発見種の原因の一つになっていることを示唆しているが、筆者らの観察でチャバネオアカムシに放棄された飼育者は試験管や枝が消失していることから、主な繁殖源としてのことが考えられる。前報によりとスギの果実は6月中旬から大きさが最大となり、枝葉の大きさは7月10日ごろ最大になる。チャバネオアカムシの種を飼育する場合スギ種子は7月中旬に枝の形態がほぼ完成し、貯蔵養分は8月上旬から9月上旬にかけて急激に増加し、穀倉であることが判明しており、スギ果実は、老熟と生殖を確認するチャバネオアカムシの成育は大きく関連していることが示唆された。このようなことから6月に飼育として利用できるのはスギ・ヒノキ球果の地域による熟さの差、またはスギ・ヒノキのクローンによる熟さの違いによるものか、あるいは未熟果実も利用し得る食性をもった個体によるものかなどと考えられるが、主な繁殖源としてのスギ・ヒノキにおける6月でのチャバネオアカムシの繁殖については、発生回数に及ぼす影響が大きく重要な問題を含んでいる。

奈良県におけるスギ・ヒノキでのチャバネオアカムシの発生消長の年次変動を比較すると、1977年と1979年は8月から9月にかけて発生が多く、10月には激減した。一方、1978年は8月中旬に発生の盛期がみられ、11月までかなり多くの生殖を認めている。このようなスギ・ヒノキでの年次変動は山間、平坦とも同様の傾向がみられた。また、1978年は8月20日、下旬にチャバネオアカムシの5齢幼虫の飛び出しを認め、その後10月上旬には同齢幼虫の大きさがピークを示した。これにより、チャバネオアカムシ発生期の発生40%であったことがわかった。

池田はチャバネオアカムシのスギ・ヒノキでの発生に年次変動があることを指摘しており、1974年と1975年の調査の結果、成・幼虫の生殖はスギ・ヒノキの種子の発育による8月下旬までであるとしている。しかし、筆者らのスギの調査では種子の発育、成熟した11月までかなり多くのチャバネオアカムシの成・幼虫の生殖を認めており、ヒノキでは10月10日まで同様幼虫を認め、スギ・ヒノキの種子の発育と年次変動は認められなかった。山田らもヒノキでの1976年から1979年のチャバネオアカムシの発生調査で、幼虫はいずれの年次も7月以降認める、1976年、1978年は9月に発生数が多く、10月以降もかなり多くの生殖を認め、1977年、1979年は7～8月に生殖を認め、1978年は9月に発生数があり、10月以降もかなり多くの生殖を認めた。また、この年次変動の原因としてヒノキ果実の熟成の減少による、種実が果を飼育として不適となるか、飼育による好適であるかのないかを推察している。

筆者らは気象との関連を検討したところ、7、8月の夏期の気温との関連は認められなかったが、9、10月の秋期の気温との関連がみられ、発生時期の早かった1977年、1979年は平均気温（東京）の平均値で9月が高年とも10月が1度（1977年）ないし13.5度（1979年）高かった。一方、遅くまで発生が続いた1978年は平均値で9月が-0.2度、10月が-1.3度と低く（1976年同傾向）、その差は9月で10.2度、10月で2.3〜3.1度であった。この9、10月の気温の差がスギ・ヒノキの果実やチャバネオアカムシの生殖の回帰に影響を及ぼしていかないか検討を加える必要があるものと考える。

また、気象要因と関連してチャバネオアカムシの産卵期の早期あるいは産卵期の幅に年次変動がみられ、スギ・ヒノキでの同成虫発生時期に関連しており、スギ・ヒノキでのチャバネオアカムシの産卵期の時期を詳細に調査が必要である。

一方、クサギカメンシではスギ・ヒノキでの年次による発生盛期の差はわずかしか認められず、チャバネオアカムシに比べて安定した発生消長を示し、年次変動の少ない種であることからチャバネオアカムシの性質に違いがあることが示唆された。

なお、チャバネオアカムシはスギとヒノキが隣接している状況ではヒノキに生殖が多いた向かわれたが、スギの多い場所ではヒノキに比べ生殖密度は高く、飼育としての選好による影響が少ないものと思われ、飼育の量や集中分布の習性の影響が大きいことが認められた。クラギカメンシについてはもとよりスギとヒノキの飼育としての選好による影響は少ないことが指摘された。

スギ・ヒノキでのチャバネオアカムシの生殖は種の選好の影響に影響を受ける。
響され、球果のない樹での幼虫の生息はみられず、小林らも斯様で同様の観察をしている。しかし、球果が多ければ必ず多くのカメムシ類が生息しているのではなく、場所による影響も大きく、林内密鉢の分布はかなり不均一である。小林らも球果がついていても採集されない木があり、特定の木または場所に集まっている傾向があるとしている。また、カメムシ類の発生初期は一部の場所に集中分布する傾向が認められ、発生が増加するにしたがって比較的均一分布をするようになり、生息密度の高い場合は集中分布の傾向は少なくなるようである。

チャパネオカカメムシは10月中旬以降には、スギ・ヒノキの樹冠部表裏の陽面に生息し、体転に次第に変化する現象がみられたが、このような現象は昆虫ではしばしばみられる。カメムシ類ではミナミアオカメムシ Nezara viridula Linné で知られており、他の緑虫 similarly され、体転の生理的差異が体転変化となって現われることがある。したがって、体転変化は成虫のみならず、チャパネオカカメムシでは幼虫でもみられ、秋期には変化する現象を認めた。菊谷らもミナミアオカメムシとアオカメムシ Nezara antiquata Scott の幼虫体転には温度条件の影響が与えられている。又、低温で黑色型の比率が高くなる。しかし、観察密度が高い場合でも黒化現象を認め、これは食物の質も関係している可能性があるとしている。チャパネオカカメムシの幼虫の場合も成虫と同様に環境変化による生理的差異が体転変化として現われているのであるが、低温期では黒化による熱の吸収効率を高めていると考えられる。その生物的意義については不明な点が多い。

チャパネオカカメムシの卵は出芽して前卵囊を保護したままで、孵化直後からクワの草下卵塞に寄生するもので、スギ・ヒノキで Trissolcus planitiae とされる。鰐田にして対象物全体に分布していことがある。この卵塞を追跡する場合、生息密度は極めて高くなっている。しかしながら、9月までにクワの草下卵塞に卵が入る傾向は認められず、寄主のチャパネオカカメムシの卵は高密度でみられる。

の場合に比べて、スギ・ヒノキで分布されて産下されているにもかかわらず寄生率は比較的高い。山田らは、ヒノキでの T. planitiae を寄生種とした卵寄生蜂の卵塊寄生率は3年に通じてほぼ50％あり、チャパネオカカメムシの密度抑制に及ぼす影響が大きいことをあげている。このように主要寄主植物におけるチャパネオカメムシの卵寄生蜂は寄主の卵の死亡要因としてかなり有力な役割を果たしていることがうかがえた。

スギ・ヒノキでの発生消長及び発生量と果樹類の被害との関連については、まだ不明な点が多くあり、論議を重ねるべきがある。スギ・ヒノキでの生息密度を予察して、その誘殺数との関連について、菊谷らはチャパネオカメムシのヒノキでの見取り調査による発生消長と同地点における予察数の調査を比較検討した結果、年次によりヒノキでの発生消長と誘殺消長がかなりずれる場合があり、またヒノキでの生息密度を誘殺数と一致させる年数と一致しない年数があるとしており、この原因として hebt であるヒノキ果実の豊穣によるものではないかと考えた。

さらに、スギ・ヒノキの果実の豊穣と、カメムシ類による果樹類の被害量との間には密接な関係が示されている。しかし、奈良県では1973年から1977年まで、1978年と1979年は果実がかなり多かったにもかかわらず、とくに1978年は8月以降チャパネオカメムシが大発生し果樹類への被害が全国的にわたって認めた。このように球果の多少と果樹園の被害との関係が必ずしも一致しなかったことから、球果の地域によりかなり大きく変動する年があるために、その研究範囲の設定に問題があることも考えられ、スギ・ヒノキにおける発生経過や増殖機構についても極めて複雑な関連性があると考えられる。また、スギ・ヒノキでカメムシ類の発生密度の高まりとともに果樹類への被害が現われるかから、果樹園周辺のスギ・ヒノキでの発生消長と密切に関連していることが指摘され、しかし、スギ・ヒノキの発生消長と直接的に関連しているものを指摘した。果樹カメムシ類の発生源としてのスギ・ヒノキでの生息調査をすることにより果樹類への飛来を予測することが可能で、果樹カメムシ類の発生予察のための重要な手段となるものと考えられる。

要約

果樹を加害する主要カメムシ類のチャパネオカメムシとスギカメムシについて、主要寄主植物であり繁殖源としてのスギ・ヒノキでの発生生態を調査、果樹類の被害との関連について検討した。

1. スギ・ヒノキに生息するカメムシ類の調査を奈良県
引用文献

1. 橋本華人 1980. スギの開花と結実. 遺伝 34(6) : 4 - 10.

Summary

Observations were made on the ecology on the occurrence of Japanese cedar Cryptomeria japonica D. Don and Japanese cypress Chamaecyparis obtusa Endl as the main complete host plants for Plautia stali Scott and Halyomorpha mista Uhler, which is the main fruit-
piercing stink bugs in Japan.

1. The stink bugs which lived on J. cedar and J. cypress were 4 families and 9 species. *P. stali* lived in high density and widespread. Among the hill, *H. mista* and 3 species also lived in high density.

2. According to the observations of the seasonal prevalence on the J. cedar and J. cypress of *P. stali*, the peak of the occurrence took place from the early part to the middle in September in 1977 and in 1979, and from the middle part to the latter in October in 1978. According to the observation of *H. mista*, the peak of the occurrence came in the late September in 1978, and from the early part to the middle September in 1979.

3. The nymphs of the both stink bugs released on J. cedar had not grown in the period of the release in June, but grew in the period of the release after July. The seeds in the cones of J. cedar which fed *P. stali* were observed with soft-X-ray. The result showed few embryos and albumens in the seed.

4. These conifers which had many cones, such as J. cedar and J. cypress, were proportionally inclined to have as large population of both stink bugs.

5. The egg-parasite, *Trissolcus planitiae* Watanabe parasitized the eggs of *P. stali* on J. cedar and J. cypress. The percentage of parasitized egg-masses averaged 21.2% on J. cedar and 45.6% on J. cypress.