ハイドランジアの花芽分化と発達および低温処理による
休眠打破の効果に関する研究

中西 源治・横井 邦彦・卜部 昇治

The studies on Flower Bud Differentiation and Development in
Hydrangea macrophylla and the Effect of Low Temperature
Treatment for Breaking the Dormancy on it.

Genji NAKANISHI, Kunihiko YOKOI and Shoji URABE

緒 言
アジサイは、日本が原産であるが、18世紀末頃
欧州に渡り、交雑育種によって品種改良され、我が国に
逆輸入されたに至った。これらは西洋アジサイ（Hydr-
angea macrophylla）と呼ばれ、主として鉢植えに利用さ
れている。この H. macrophylla は、気温が下がる10月
頃 (60°F 以下約15.5°C) から花芽分化が始まり22)23)24)
低温期は常春樹で休眠に入るが、その休眠は低温過度に
よって打破される25)。

本県では、自然の低温過度で休眠打破し、1 月中旬よ
り加温して4 〜 5 月間花ささせる促成栽培が行なわれてい
るが、花芽分化および休眠打破に対する気温条件を究明
することによって、促成時期を前進させる可能性があ
る。さらに剣傷を使用すれば、より効果的な休眠打破
が行なわれることになる。そこで、植栽の変更による休眠打破
を試みた。26) 又休眠期生育抑制による周年栽培も
考えられる。

実験材料および方法

実験 1. 環境を異にしたときの H. macrophylla の
花芽分化について

供試品種は “Alpenglühren,” “Prima,” “Mme, Plume
cq.” の 3 品種とし、6 月18日摘採し、7 月1日定値、7
月22日摘採し発芽させたものを、6 月23日摘採し、7
月9日定値、7 月27日摘採を行なったものを。ただ
に等分し、頸部 (本場、標高63m) と山間地域 (山間試験地、標高360m) の試験地に移して栽培した。
実験結果

実験 I

花芽分化発達過程は第 1 図の通り、未分化、生長点分

化、花芽分化期、花芽片形成期以降（IV）の

4段階に分類を行なった。

本場における花芽分化状況は、第 1 表にみられるよう

に、10月 1日ではすべて I であったが、10月 7日には II

～IIIのものが多くなり、10月 15日にはさらに進み IVのもの

が認められた。また11月12日にはすべての花芽が IVに達

していた。

山間試験地では10月1日で、すでに II ～ IIIの段階まで

進んでいたものが見られた。その後の花芽の発達も、山

間試験地が、本場よりも長期間、進行が早かった。

試験期間中の気温は、第 2 図の通りであって、本場にお

いて花芽分化 II の10月上旬は、平均気温 17℃であった。

これには小杉等3)、Post3)、Shanks4)、Struckmeyer5) の

報告結果と近似していた。

実験 II

第 2 図 試験中の温度変化（1968年）

第 1 表 環境を異にした時の花芽分化の推移

<table>
<thead>
<tr>
<th>月 日</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第 3 図 入室時期を異にしたときの生育・開花と

関係の影響
入室時間を異にしたときの生育開花に及ぼす影響は、第3図に示す通り、12月2日および22日入室区では、ほとんどの品種で開花が遅れ、開花繊いも悪く、開花径率は30～40％と低くなった。1月2日および12日の場合、いずれの品種でも、開花が早まり、開花繊いもよく、開花率も高まった。

以上のことから、いずれの品種も入室時間を1月2日以降12日まです行なうことにより、それ以前より入室したものに比べ、開花促進と開花期一、開花率が高くなる結果を得た。定期入室区の開花率の低下は、発芽の状態のまま座止したものが多くなかった。

入室時期と草丈の関係は、第4図にみられるように、

![図](image)

第4図 入室時期と草丈の関係
1. 12月12日入室
2. 12月22日入室
3. 1月2日入室
4. 1月12日入室

一方、地際から発生するジェートの開花率は、側枝に比べて、全般に低く、また、品種間差異が大きく、摘心時期による影響は明らかでなかった。

摘心時期と開花時と草丈の関係は、第5図に示す通り、摘心時期が早いか、開花も早まり、その程度は品種により異なるが、摘心を約10日程の範囲内であった。

開花率は、側枝の場合、品種によって異なるが、いずれも摘心した7月22日区のもので高くなり、摘心時期が遅れる場合、低くなる傾向がみられた。

品種別にみると、"Europe"、"King George V" は8月22日摘心区以降、急速に低下するが、"Mme. Plume-
coq"、"Princess Beatrix" はその程度が少ない。

<table>
<thead>
<tr>
<th>品種名</th>
<th>摘心時期</th>
<th>開花日</th>
<th>開花率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7月22日</td>
<td>8月2日</td>
<td>9月2日</td>
</tr>
<tr>
<td></td>
<td>12日</td>
<td>15日</td>
<td>16日</td>
</tr>
</tbody>
</table>

実験Ⅲ
摘心時期を異にしたときの生育開花に及ぼす影響は、第2表に示す通り、摘心時期が遅いか、開花も早まり、その程度は品種により異なるが、摘心を約10日程の範囲内であった。

実験Ⅳ
花芽分化段階を第6図によって分類すると、低温処理直前の花芽分化程度は、一段に示す通り、10月1日では再品種が未分化であり、10月15日では "Aichi Aka" がIVまで進行していた。一方 "Prima" は未分化で11月1日、IIの分化がみられた。

低温処理開始中においても、自然条件下に置かれたもの
中西順治・高井邦彦・卜部崇治：ハイドランジアの花芽分化と発達および低温処理による休眠打破の効果に関する研究

第5図 捨心期と茎丈の関係

第6図 花芽分化段階図

と同程度か、やや遅れる程度の花芽分化の進行がみられた。

低温処理の時期と期間が生育開花に及ぼす影響は、第7図に示した。“Aichi Aka”では12月15日及び1月1日入室の対照区に比較して、10月1日に低温処理を開始したものは、45日間の処理後、また10月15日に開始したものは30日以上処理すれば、開花が早まった。しかしそれより低温処理期間が短い場合には、開花遅延の傾向を示した。また、11月1日以降に低温処理を開始すれば、低温処理期間の長短にかかわらず、開花がわずかに早まった。

“Prima”においては、10月1日処理の各区及び10月15日、30日間処理および、11月1日の15日間処理区は、いずれも無低温処理区より10日程度の開花遅延をみた。10月15日の45日間処理区および、11月1日の30日間処理区のものは、開花が無処理区よりわずか15日から20日程度早まった。

開花時の茎丈は、第8図に示す通り早期低温及び、低温期間の短い場合は低く、特に“Aichi Aka”について

第3表 開花促進に対する低温処理が花芽分化に及ぼす影響

<table>
<thead>
<tr>
<th>入荷日月</th>
<th>10月1日</th>
<th>10月15日</th>
<th>11月1日</th>
<th>11月15日</th>
<th>無処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>品種名</td>
<td>Aichi Aka</td>
<td>Prima</td>
<td>Aichi Aka</td>
<td>Prima</td>
<td>Aichi Aka</td>
</tr>
<tr>
<td>10月1日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月1日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月15日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月1日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月15日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月1日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
<tr>
<td>11月15日</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
<td>未</td>
</tr>
</tbody>
</table>
第8図 低温処理時期、期間と開花時の草丈

第4表 品種の低温処理と生育機能の関係

<table>
<thead>
<tr>
<th>品種</th>
<th>出芽</th>
<th>発芽開始</th>
<th>開花</th>
<th>全草丈</th>
<th>開花数率</th>
<th>花群径</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpen glühren</td>
<td>4月 35日</td>
<td>6月 5日</td>
<td>66日</td>
<td>12.4cm</td>
<td>17.6cm</td>
<td>75.6%</td>
</tr>
<tr>
<td>5 35</td>
<td>6 30</td>
<td>61</td>
<td>14.3</td>
<td>20.2</td>
<td>64.2</td>
<td>15.8</td>
</tr>
<tr>
<td>6 23</td>
<td>7 21</td>
<td>51</td>
<td>12.8</td>
<td>19.0</td>
<td>86.2</td>
<td>13.1</td>
</tr>
<tr>
<td>7 22</td>
<td>8 25</td>
<td>56</td>
<td>12.9</td>
<td>19.1</td>
<td>60.0</td>
<td>12.6</td>
</tr>
<tr>
<td>9 30</td>
<td>9 30</td>
<td>61</td>
<td>11.5</td>
<td>16.8</td>
<td>48.9</td>
<td>13.8</td>
</tr>
<tr>
<td>10 37</td>
<td>12 19</td>
<td>80</td>
<td>9.5</td>
<td>16.0</td>
<td>51.5</td>
<td>12.3</td>
</tr>
<tr>
<td>11 33</td>
<td>1 30</td>
<td>91</td>
<td>11.9</td>
<td>17.0</td>
<td>42.9</td>
<td>14.9</td>
</tr>
<tr>
<td>12 35</td>
<td>2 27</td>
<td>89</td>
<td>12.1</td>
<td>17.1</td>
<td>60.6</td>
<td>14.5</td>
</tr>
<tr>
<td>Prima</td>
<td>4月 34日</td>
<td>6月 5日</td>
<td>66日</td>
<td>12.6cm</td>
<td>18.1cm</td>
<td>87.1%</td>
</tr>
<tr>
<td>5 30</td>
<td>6 28</td>
<td>59</td>
<td>14.9</td>
<td>22.2</td>
<td>84.4</td>
<td>17.3</td>
</tr>
<tr>
<td>6 20</td>
<td>7 16</td>
<td>46</td>
<td>13.0</td>
<td>19.7</td>
<td>90.3</td>
<td>14.8</td>
</tr>
<tr>
<td>7 24</td>
<td>8 20</td>
<td>51</td>
<td>9.4</td>
<td>15.8</td>
<td>83.9</td>
<td>10.1</td>
</tr>
<tr>
<td>8 26</td>
<td>9 28</td>
<td>59</td>
<td>12.0</td>
<td>16.7</td>
<td>76.6</td>
<td>18.9</td>
</tr>
<tr>
<td>9 24</td>
<td>10 27</td>
<td>57</td>
<td>9.2</td>
<td>15.1</td>
<td>61.2</td>
<td>14.4</td>
</tr>
<tr>
<td>10 35</td>
<td>12 22</td>
<td>83</td>
<td>11.5</td>
<td>17.6</td>
<td>76.6</td>
<td>14.0</td>
</tr>
<tr>
<td>11 34</td>
<td>1 29</td>
<td>90</td>
<td>8.4</td>
<td>16.0</td>
<td>91.1</td>
<td>16.0</td>
</tr>
<tr>
<td>12 27</td>
<td>2 24</td>
<td>86</td>
<td>10.8</td>
<td>18.4</td>
<td>100.0</td>
<td>16.7</td>
</tr>
</tbody>
</table>
は、その傾向が顕著であった。

実験Ⅴ
低温加温後の生育開花を出庫時期別に示すと第4表の通りとなった。

すなわち、いずれの品種も4日出庫の場合、入庫発育
まで30日間以上を要し70日間前後で開花した。5日出庫の
場合は、30日間前後で発育L60日を経て開花した。6、7月
出庫の場合は25日程で発育し50～55日前後で開花した。
8、9月出庫の場合も25日程で発育し約40日で開花し
た。10～12月出庫の場合は、30日前後で発育し、80～90
日間程要した。

開花率は、品種により異なるが、8～11月の各出庫の
ものは、低く、4～6月出庫のものは比較的高い。また
冬期の12月出庫のものは、品種間差異がみられ、一定の
傾向が認められなかった。

開花時の側枝長および草丈と、出庫時期の関係には一
定の傾向が認められなかった。

考察

H. macrophylla の花芽分化は、奈良県坪町部で10月上
旬より始め、11月上旬にはとどまらず片形成される
のに似た、中山間部ではそれぞれ9月下旬頃、10月中旬
頃と早くなかった。この2地点の花芽分化期の温度は約17
℃以下であり、Shanks, Post, Struckmeyer, 小杉らの述
べているところと一致している。

したがって、早期に花芽分化若葉に至る中山間部の方が
が、促成栽培用の栽培に有利である。（

12月12日より1月12日まで10日に1回に入庫加温した場
合、入庫加温期が遅くなる程、草丈が長くなり、着
色、開花が早かった。また開花期も早く終わった。この
ように入庫加温期の遅い方に生長し、開花若葉に大きな
影響が現われるが、これは低温処理による休眠打破程度の
違いによるものとみられる。本試験での各品種の休眠打
破程度は判らなかったが、低温に適応させて、ある程度
休眠を打破した後でなければ、加温しても花芽を期待し
得ない。しかし休眠が完全に破れておらず、加温に
よって開花が早くなることも考えられる。上の点に留意
して、奈良県における入庫加温時期をみると、気象条
件、地域によって異なるが、1月中旬程が適当な時期と
いえる。

摘心時期の違い等開花開花率が低かったことは、摘心後の
側枝の発育が小さい傾向、花芽分化に適当な環境条件を
与えられていたことも感得したが、開花率が低かった。また
自然低温下ならびに入庫加温後とも花芽分化に適当温度
であると考えられることか、開花されなかった。
読

1. *Hydrangea macrophylla* を周年開花させるために一連の実験を行なった。

2. 栄養的状態の花芽分化を観察した。奈良県下の中山間部で9月下旬、平野部では10月下旬頃より分化したので、花芽分化には約17℃以下の温度が適温と考えられた。

3. 入室加温時期を変えたところ、1月中旬より加温した場合、開花率、開花数とも良好であった。

4. 花芽分化に必要な春の条件のために摘心時期を変えた。“Princess Beatrix”では9月上旬まで、“King George V”“Mme. Plume-coq”では8月上旬までに摘心した場合、開花率が高かった。

5. 休眠打破のために、入室加温前に低温処理（1〜4℃）を行なった。低温処理により開花率、開花数ともよくなった。期間は10月15日より45日間、11月1日より30日間以上、11月15日より15日間以上が適していた。

6. 花芽分化後、株を冷蔵して周年開花を検討した結果、適時出庫することにより周年開花が可能となった。

引用文献


Summary

1. This series of experiment was performed for the flowering of *Hydrangea macrophylla* all year round.

2. Natural flower bud differentiation of *H. macrophylla* was observed in two spots in Nara district. It was took place in early Nov. in a hill region (Uda) and in the middle of the same month in a plane (Kashihara), so it is found that the favorable temperature condition for the bud differentiation is under 17℃.

3. The plants were put in the glasshouse heated, at least, at 13℃. every twenty days from Dec. 12 on. The result shows that the plants forced in the middle of Jan. proved the best not only in the flowering rate but in the uniformity.

4. The pinching time was varied so that the satisfactory growth and the flowering rate might be turned out in the following procedure: with “Princess Beatrix” the pinching had to be finished by early Sept. and with “King George V” “Mme. Plume-coq” by early Aug.

5. The flowering rate and uniformity were increased when the cooling periods covered 45 days on end from Nov. 15, respectively.

6. The plant underwent the dark cold storage treatment after bud differentiation, being afterwards yielded to forcing. As a consequence of it, the flowering all the year round was made possible.