Summary

We investigated the effect of fungicides in four fields and the decreased sensitivity to fungicides.

1. powdery mildew on strawberries (Sphaerotheca humuli) was tested for sensitivity to six fungicides in four fields, and the decreased sensitivity to bitertanol, fenarimol, triflumizole, triforin, and poroixin were detected.

2. After treatment with bitertanol, we observed a decrease in the efficiency of bitertanol at concentrations of 2,500 and 5,000 times. However, it showed good efficiency at 1,250 times.

3. After treatment with bitertanol, we observed simultaneous decrease in activity of bitertanol and triadimefon. This suggests the possibility of cross resistance between these two fungicides.

4. Runners with a new leaf and seedlings of diploid strawberry were used to test for sensitivity to fungicides. Similar results were indicated in this method and field tests. In this method, sensitivity to fungicides can be tested in a narrow place year round in a climate room.

Key word: powdery mildew, Sphaerotheca humuli, EBI, resistance to fungicides, cross resistance
ビテルノール水和剤5,000倍、トリフルミゾール水和剤5,000倍、フェナリミル水和剤4,000倍、トリホリオン乳剤2,000倍の4薬剤と、有機銅剤のDBEDC乳剤1,000倍の計5薬剤（以下“水和剤”、“乳剤”は省略）についてうどんこ病の防除効果を検討した。供試品種に“とよのか”を用い試験区を1区2つ3反復とした。薬剤散布は、鳥屋町で2月11日、新庄町1、2で5月11日、新庄町3で12月13日に1区あたり1.5ℓを手動式噴霧器で行った。発病調査は薬剤散布日から7日後につく1区10株270小葉について行い、発病葉率と発病度を算出した。
発病度は、小葉に形成された病斑の面積をもとに下記の基準に従って発病程度を調べ次式により算出した。

病斑なし：0、散見されるもの：1、葉の1/4以下に見られるもの：2、葉の1/2以下：3、葉の1/2以上：4
発病度 = \[\frac{\sum \text{(病変面積の指数 \times 葉数)}}{4 \times \text{調査葉数}} \]

防除価は（無処理区発病度 - 処理区発病度）/無処理区発病度×100として算出した。

2. 薬剤の防除効果簡易検定
1）ランナーの先端小葉を用いた方法
“とよのか”の展葉直後のランナーを親株から切りとり、直ちに小葉を供試薬液に浸漬し、十分に振とうして気泡を取り除き1時間風乾した後、うどんこ病菌を接種した。接種は新鮮な菌斑が生じている果実を小葉の裏側に軽く押し付けて分生胞子を付着させ、室温20℃、湿度60～70％、蛍光灯による8,000lx照明の恒温室内に静置した。供試薬剤には新庄町2のビテルノール2回散布圃場から採集した菌（B菌）を用いた。発病調査は処理日から7日後に1薬剤当たり15本のランナーの全小葉について行い、発病葉率と発病度を算出した。

2）Fragaria ×ananassaの実生苗を用いた方法
F. ×ananassa（2倍体のイチゴ）種子を72穴プラットレイに播種して、5～6葉にて育成した苗（以下実生苗）を、1区6株、トレイのまま6穴ずつ切り取り供試した。その実生苗に供試薬液を葉裏にも十分かかるように散布し、風乾後、高さ30cm、直径25cmのアクリル製円筒をかぶせ、うどんこ病菌病斑の新鮮な病斑の分生胞子を円筒の上部から小葉で静かに払い落として接種した。供試菌には福原市四条町の殺菌剤無使用圃場から採集した菌（N菌）を用いた。

3. ビテルノール剤およびトリアジメホン剤に
に対するうどんこ病の感受性検定
ランナー実生苗および実生苗にビテルノール1,250倍、2,500倍、5,000倍をそれぞれ散布し、風乾後、うどんこ
病B菌を接種して薬剤感受性を検定した。
次に、N菌とB菌についてビテルノールの処理後の薬剤感受性の変化を調査するため、ビテルノール2,500倍処理区で生きた残った菌斑を20日間実生苗上で培養したうどんこ病菌について、ビテルノール650倍、1,250倍、2,500倍、5,000倍とトリアジメホン2,000倍に対する感受性を前項の方法で検定した。

結果
1. 現地圃場における薬剤の防除効果
新庄町、鳥屋町において、いずれの調査圃場でも無処理区の発病葉率は、27.7％から32.5％、発病度も8.7から10.8であり、圃場間の発病程度はほとんど変わらなかった。薬剤の防除効果は、鳥屋町では供試したいずれの薬剤も防除価99前後と高かったが、新庄1新庄2ではトリホリオン2,000倍がそれぞれ70、71とやや低く、ビテルノール5,000倍の防除価が66、59と低かった。他のEBI剤は90以上と高かった。新庄3ではEBI剤の効果はトリフルミゾール5,000倍が69とやや低く、フェナリモル4,000倍が43と著しく低かった。有機銅剤のDBEDC1,000倍はいずれの圃場でも95から98と効果が高かった（第1図）。

第1図 現地圃場でのイチゴうどんこ病に対する薬剤の効果
Fig. 1 Effect of fungicides to powdery mildew at four fruit production fields in Nara.
2. 薬剤の防除効果簡易検定法
1) ランナーの先端小葉を用いた検定
新鮮な薬剤が生じている果実を薬剤処理していないランナーの先端葉の裏側に押し付けて接種したところ、発病葉率は100％、発病度は83.3であり、接種後1週間でうどんこ病を確実に感染させることができた。供試薬液に浸漬して風乾したランナーの先端小葉にピタノール2回散布圃場から産出したうどんこ病B菌を接種したところ、トリフルミゾール5,000倍は防除率が96、フェナリモール4,000倍は100と高かったが、ピタノール5,000倍は75とやや低く、トリホリニン2,000倍は42と防除が著しく低かった（第2図）。

第2図 ランナー先端小葉を用いた薬剤のうどんこ病菌に対する防除効果
Fig. 2 Effect of fungicides to powdery mildew on runners with a new leaf.

2) 実生苗を用いた検定
殺菌剤無使用圃場から産出したうどんこ病N菌を前項と同様に実生苗とランナー先端小葉に接種した。実生苗を用いた場合、発病葉率は100％で、発病度は58.3であり、うどんこ病菌を容易に感染させることができた。この条件下で薬剤を前処理した場合、ピタノール5,000倍、トリフルミゾール5,000倍、フェナリモール4,000倍は防除率が100から94に高い防除効果を示したが、トリホリニン2,000倍は74とやや低かった。また、ランナー先端小葉を用いた場合も同様の傾向を示した（第3図）。

第3図 実生苗を用いた薬剤のうどんこ病菌に対する防除効果
Fig. 3 Effect of fungicides to powdery mildew on seedlings of diploid strawberries.

3. うどんこ病菌の薬剤感受性
1) ピタノールの濃度とうどんこ病菌の感受性の関係
ピタノール2回散布圃場から産出したB菌に対するピタノールの濃度別の防除率を求め、実生苗とランナー先端葉を用いて検定したところ、1,250倍では実生苗を用いた場合85、ランナー先端葉で89と検定ともにピタノールの効果が認められた。しかし、濃度の5,000、2,500倍ではともに70前後と低く、B菌の感受性低下が認められた（第4図）。

2) ピタノールを処理したうどんこ病菌のピタノールおよびトリアジメホンに対する感受性
ピタノール2,500倍処理後、生き残った菌を実生苗で増殖し、前項と同様に感受性を検定した。その結果、B菌はピタノール5,000、2,500倍での防除率がそれぞれ71から26、73から59と低下した。これまでピタノールを散布していないN菌もそれぞれ96から74、92から80と感受性が低下したが、1,250倍では96から100と感受性の低下は認められなかった（第1表）。また、N菌、B菌はトリアジメホン2,000倍の防除率がそれぞれ94から72、46から40と低下し、トリアジメホンに対しても感受性は低下した（第5図）。

なお、ピタノール処理前後の発病葉率を比較すると、B菌は39.7％から48.9％、N菌は24.1％から48.8％といずれもピタノール処理後に残存した菌の接種による発病葉率が高かった（第1表）。
第4図 うどんこ病菌に対するビテルタノールの濃度別防除効果

Fig. 4 Effect of three concentrations of bitertanol to powdery mildew

考察

イチゴうどんこ病のEBI剤に対する感受性の低下については、BALら23がビテルタノールに対する低下について報告しているが、国内では確認されていない。今回、現地圃場での防除試験において、有機剤のDBE DCの防除効果は認められたが、EBI剤であるフェナリモル、トリフルミソール、ビテルタノール、トリホリオンの効果はかなり劣った。そこで、EBI剤が圃場で多用されていることから、EBI剤に対するうどんこ病の

第5図 ビテルタノール処理後のうどんこ病菌に対するビテルタノールとトリメジホンの防除効果

Fig. 5 Effect of bitertanol and triadimefon to powdery mildew which have been treated with bitertanol.

第1表 うどんこ病菌のビテルタノールに対する感受性の変化

Table. 1 Change of effect of bitertanol to powdery mildew which been treated with bitertanol.

<table>
<thead>
<tr>
<th>供試菌</th>
<th>ビテルタノール</th>
<th>ビテルタノール処理前の菌</th>
<th>ビテルタノール処理後の菌3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>处理度</td>
<td>感受性</td>
<td>発病病葉率（％）</td>
</tr>
<tr>
<td></td>
<td>650倍</td>
<td>1,250倍</td>
<td>2,500倍</td>
</tr>
<tr>
<td>B菌23</td>
<td>9.8</td>
<td>13.7</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>5.4</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>73</td>
<td>71</td>
</tr>
</tbody>
</table>

1) ビテルタノール2回散布圃場から採集 2) 薬剤無散布圃場から採集 3) ビテルタノール2,500倍処理後、生き残った菌を20日間培養した菌
感受性について検討した。
うどんこ病のどのような絶対寄生菌に対する薬剤の検定は、宿主の上での行うのが一般的である。室内で検定として、キュウリうどんこ病について、Schepersらが検定薬液の上に浮かべたリーフディスクの上に分生胞子を振わせて接種しているが、イチゴうどんこ病菌については、きわめて感染しにくいため検定に用いることができない。そこで筆者らは、ランナー小葉、実生苗にうどんこ病菌の分生胞子を接種する方法を検討したところ、短期間の内に高率に感染させることができた。ランナー小葉は感染率が低いため、利用できる時期がランナーの発生が多い春から秋に限定され、実生苗は感染率がやや劣るが、周年用いることができる。両者とも小面積で多量に検定することができ、効率のよい薬剤効果検定方法と考えられる。

この方法を用いて、圃場試験で防除効果の劣ったビデルタノールに対するうどんこ病の感受性について検定したところ、慣行使用濃度（5,000, 2,500倍）の1回散布でも薬剤感受性低下がみられた。しかし濃度（2,500倍）の薬剤処理では効果が持続していることから、この濃度での感受性低下度は出現していないものと考えられる。

ビデルタノールを2回散布した圃場から採集したB菌は、ビデルタノールだけでなくトリアメジンに対してもすでに感受性が低く、ビデルタノール処理を加えるとさらに低下した。また、薬剤無散布圃場から採集したB菌については、ビデルタノールの1回処理で、感受性が低下すると同時にトリアメジンに対する感受性も低下し、トリアメジンに対する交差耐性を持つことが示唆された。また、供試したB菌とB菌はEBI剤処理することによって発病葉率、発病度を高め、処理後の病原性が強く、EBI剤の処理が病原性に影響したものと推察される。このことについて、BALらもイチゴうどんこ病菌は薬剤感受性低下菌の病原性のほうが強いとしている。

薬剤感受性低下菌の病原性が感受性菌より強い場合、イチゴうどんこ病菌は生活環境をイチゴ植物体上で完結するいわば、期作のイチゴ栽培圃場への感受性低下菌の割合が高まり、感受性回復が容易でないことが懸念される。また、イチゴうどんこ病菌を登録のあるEBI剤は年々増加しており、供試した3薬剤の他に2薬剤があり、今後、これらの薬剤のなかで交差耐性を有することが予想される。したがって、検定法を用い、出荷地でのEBI剤に対するうどんこ病菌の感受性の動向を的確に把握し、薬剤感受性を考慮した薬剤の選択を基盤する必要がある。

謝辞

B菌体イチゴ（Fragaria inunmae）の種子を分譲していただいた横浜国立大学の織田教授に深謝の意を表する。

摘要

イチゴうどんこ病は“とよのが”等の発病性品種の作付増加にともない、薬剤による防除効果の低下が問題になっている。そこで圃場での薬剤の防除効果の効果判定を行うと同時に、室内での検定法を開発し、薬剤感受性低下について検討した。

1. 現地圃場で薬剤の効果判定を行ったところ、EBI剤であるフェナリモル、トリフルオゾール、ピュエルタノール、トリホロンの防除率は低い圃場が確認された。

2. ランナー先端小葉、B菌体イチゴ苗に、うどんこ病菌の分生胞子を接種することにより、高率に感染させることができ、効率的に薬剤の防除効果が判定できた。

3. ピュエルタノール2.50倍処理で生き残ったうどんこ病菌は同剤に対する感受性低下がみられ、同時にトリアメジンに対する感受性低下もみられた。しかし、ピュエルタノール1.25倍に対する感受性低下はみられなかった。

引用文献

6. 谷川元一・中野智彦・森原敏弘・岡山健夫・潮崎滋雄、イチゴうどんこ病（Sphaerotheca humuli）に対する薬剤の防除効果と葉面における薬剤の着着量との関係。日本農業学会投稿中