技術資料

光硬化型 3D プリンター成形品の機械的特性に及ぼす CNF 添加の影響

琴原 優輝*1), 菊谷 有希*1), 荒堀 康史*2), 辻坂 敏之*1), 山下 浩一*1)

Influence of addition of CNF on mechanical properties of stereolithography 3D printing products

KOTOHARA Yuki *1), KIKUTANI Yuki *1), ARAHORI Yasushi *2), TSUJISAKA Toshiyuki *1),

YAMASHITA Hirokazu *1)

樹脂の分野では CNF 複合化による機械的強度の向上等の試みが盛んに行われており, 3D プリンターへの 応用も検討されている.しかしながら,溶融樹脂を利用した方式による 3D プリンターでの検討は多く見か けられるが,光硬化による方式での 3D プリンターへの応用はあまり見かけられない.そこで本研究では,光 硬化型 3D プリンターのモノマー原料に CNF を 0.5wt%添加し,同一成形条件下における機械的特性(曲げ弾 性率及び引張強度)に対する影響について評価を行った.その結果,少なくとも成形から9日間,日光にさら した時点で比較する必要があることが分かった.また,CNF の添加により,平均値ベースで曲げ弾性率及び 引張強度ともに向上することが分かった.引張強度においては約 50%と大幅な向上が見られることが分かっ た.

1. 緒言

近年, 3D データがあれば成形できる 3D プリンターの市場 が広がってきている.とりわけ、製造業においては金型を用 意する必要がないため試作などの検討も容易に行えるほか, 成形品自体を精密機器や, 電気・電子製品, 自動車等の部品 に用いる動きがあり、今後、さらに需要が大きくなることが 見込まれる.一方,近年,木材を解せんして得られるセルロ ースナノファイバー (CNF) が注目を集めている. この CNF は、高強度、高弾性率、低熱膨張率といった優れた特徴を保 有しており,環境負荷も少ないことから様々な分野で工業 的利用が検討されている¹⁾. うち、樹脂の分野では、複合化 による機械的強度の向上等の試みが盛んに行われており, 3D プリンターへの応用も検討されている²⁴). しかしなが ら, 溶融樹脂を利用した方式による 3D プリンターでの検討 は多く見かけられるが、光硬化による方式での3Dプリンタ ーへの応用はあまり見かけられない. そこで本研究では、光 硬化型 3D プリンターのモノマー原料に CNF を添加し,同 一成形条件下における機械的特性(曲げ弾性率及び引張強 度)に対する影響について評価を行った.

2. 実験方法

2.1 材料および試験片の成形

3D プリンターで使用するモノマーには、Zortrax 製の Zortrax Photopolymer Resin Basic (White/ivory)を用いた.また、CNF には、各種油剤、有機溶剤に対する高い分散性を特徴とする (株)シーズリアクト製のセロキサン®SCDを用いた.CNF の添加量は、モノマーに対し 0.5 wt%とし、モノマーに添加 後、冷却下で約 10,000 rpm でホモジナイズすることで調製 した.調製後、出来るだけ気泡の混入を防ぐため自公転ミキ サー(あわとり練太郎)による脱泡操作を行った.

試験片の成形は、Zortrax 製の光硬化型 3D プリンター
Inkspire を用い、幅1 cm×長さ8 cm×厚み4 mmの試験片
3D データを使用し行った.成形条件には、モノマーに設定
されている標準条件を採用し、厚み方向に対して 0.025 mm
積層する条件で行った.

2.2 比較条件の設定

光硬化型 3D プリンターで成形された樹脂は, その直後は 完全に硬化しておらず, 必要に応じて日光や UV ステーシ ョンにより追加で硬化させる必要がある. その程度によっ て物性も変化するため, CNF 添加における機械的特性の比 較をするにあたり, 日光にさらした日数に対する曲げ弾性 率の経時変化を確認し, 概ね飽和する時点を調査した.

2.3 機械的特性試験

曲げ弾性率及び引張強度試験には、万能試験機(インスト ロン社製インストロン 5582)を用いた.曲げ弾性率は 100 N のロードセルを用い、3 点曲げ、支点間距離 64 mm,試験速 度 1 mm/min の条件で行った.引張強度は、5 kN のロードセ ルを用い、掴み具間距離 30 mm,試験速度 10 mm/min の条 件で行った.それぞれ n=5 とし、平均値及び標準偏差を算 出した.

3. 結果及び考察

3.1 比較条件の設定

Fig.1に日光にさらした日数に対する曲げ弾性率の経時変 化の結果を示す.なお、図中のバーは標準偏差を示しており、 それぞれ平均値をプロットしている.Fig.1に示したとおり、 Blank 及び 0.5 wt% CNF ともに成形直後(0 日目)から 3 日目 にかけて急激に曲げ弾性率が向上しており、以降、次第に緩 やかになっていく様子が分かる.成形直後から数日は露光 条件による差が大きく影響すると見られ、機械的強度の比 較に不向きであると言える.一方、7 日目から 9 日目にかけ ての曲げ弾性率は Blank, 0.5 wt% CNF ともに変動率が 5 % 以内に収まる程度の向上に落ち着いており、概ね飽和して いる.従って、この9 日目時点を機械的特性の比較時点とし た.

Fig. 1 Results of relationship between Exposure time and Flexural modulus

3.2 機械的特性試験の結果

Fig. 2 に比較時点における曲げ弾性率試験の結果を示す. 一般に,溶融混練により複合化された CNF 複合化樹脂の曲 げ弾性率は,ベースとなる樹脂よりも高い曲げ弾性率を示 すことが知られているが,Blank の曲げ弾性率が 3140 MPa であったのに対し,0.5 wt% CNF では 3180 MPa と,わずか ではあるが平均値ベースで曲げ弾性率が向上する結果とな った.

次に、Fig.3に比較時点における引張強度試験の結果を示 す.Blankの引張強度が41.9 MPaであったのに対し、0.5 wt% CNFでは62.8 MPaと約50%の大幅な向上が見られる結果 となった.引張強度の向上は、CNFによる引き抜け防止効 果を期待すると引張方向に配向することが望ましい.今回 用いた光硬化型プリンターは、規制液面法による方式であ り、成形時に造形テーブルを下げ、モノマーの下から光を当 てつつ積層させていく.Blankと比べ0.5 wt% CNFで大幅な 向上が見られたのは、Fig.4 に示したとおり、造形テーブル が下方向に動く際、モノマー原料が2次元方向に流動し、そ れに伴いモノマー原料中にランダムに配置された CNF も流 れ方向に揃ってきたためではないかと考えられる.本考察 についてはさらなる検証が必要である.

Fig. 2 Results of Flexural modulus

Fig. 4 Image of mechanism of improvement of tensile strength

4. 結言

今回, CNFを 0.5 wt%添加した光硬化型 3D プリンター成 形品について曲げ弾性率,引張強度の評価を行った.その結 果,今回用いた条件では少なくとも成形から9日間,日光に さらした時点で比較する必要があることが分かった.また, CNF の添加により,曲げ弾性率及び引張強度の向上が判明 した.とりわけ,引張強度においては約50%と大幅な向上 が見られることが分かった.

謝辞

本研究の実施にあたり,貴重なご助言を頂きました独立 行政法人高等専門学校機構国立奈良工業高等専門学校嶋 田豊司名誉教授及び試料調製にご協力頂きました株式会社 シーズリアクト様に厚く御礼申し上げます.また,本研究 は奈良県 AI ラボを活用して実施致しました.

参考文献

- ナノセルロースフォーラム、トコトンやさしいナノセル ロースの本, p88-143, 2017 第一版
- 須田高史, CNF の熱溶解積層法における積層条件の検 討, 2021 年度精密工学会春季大会学術講演会講演論文 集, p96, 2021
- Qianqian Wang, Chencheng Ji, Lushan Sun, Jianzhong Sun, Jun Liu, Cellulose Nanofibrils Filled Poly (Lactic Acid) Biocomposite Filament for FDM 3D Printing, Molecules, 25(2319), 2020
- 4) 奥平有三, 臼杵有光, 矢野浩之, 栗山晃, 熊坂光弘, CNF 強化ポリアミド樹脂の 3D プリンター成形, 成形加工シ ンポジア'19, p89-90, 2019